
Compiler Analysis as Constraint Solving:
Taming The Complexity With CAnDL

Philip Ginsbach
The University of Edinburgh
philip.ginsbach@ed.ac.uk

Michael F. P. O’Boyle
The University of Edinburgh

mob@ed.ac.uk

(a) CAnDL program:

1 Constraint SqrtOfSquare

2 (opcode{sqrt_call} = call

3 ∧ {sqrt_call}.args[0] = {sqrt_fn}

4 ∧ function_name{sqrt_fn} = sqrt

5 ∧ {sqrt_call}.args[1] = {square}

6 ∧ opcode{square} = fmul

7 ∧ {square}.args[0] = {a}

8 ∧ {square}.args[1] = {a})

9 End

(b) C program code:
1 double example(double a, double b) { return sqrt(a*a) + sqrt(b*b); }

(c) Resulting LLVM IR:
1 define double @example(
2 double %0,
3 double %1) {
4 %3 = fmul double %0, %0
5 %4 = call double @sqrt(%3)
6 %5 = fmul double %1, %1
7 %6 = call double @sqrt(%5)
8 %7 = fadd double %4, %6
9 ret double %7 }
10 declare double @sqrt(double)

(d) First solution:

a = %0

square = %3
sqrt_call = %4

sqrt_fn = @sqrt

(e) Second solution:

a = %1

square = %5
sqrt_call = %6

sqrt_fn = @sqrt

(f) C++ transformation code:
1 void transform(map<string,Value*> solution, Function* abs) {
2 ReplaceInstWithInst(
3 dyn_cast<Instruction>(solution["sqrt_call"]),
4 CallInst::Create(abs, {solution["a"]}));
5 }

(g) Transformed LLVM IR after DCE:
1 define double @example(double %0, double %1) {
2 %3 = call double @abs(double %0)
3 %4 = call double @abs(double %1)
4 %5 = fadd double %3, %4
5 ret double %5 }

Figure 1. Demonstration of a simple CAnDL program

Abstract
Optimizing compilers require sophisticated program analysis
to select suitable optimizing transformations. Implementing
analysis functionality is difficult and time consuming. For
example, in LLVM, tens of thousands of lines of code are
required to detect opportunities for peephole optimizations.

We present the Compiler Analysis Description Language
(CAnDL), a domain specific language for compiler analysis.
CAnDL is a constraint based language that operates over
LLVM’s intermediate representation. The compiler developer
writes a CAnDL program, which is then compiled by the
CAnDL compiler into a C++ LLVM pass.

A very simple CAnDL program is shown in Figure 1. The
aim is to implement an optimization pass that applies the
algebraic property of the square root function in Equation 1
to perform a floating point optimization (we assuming the
fast-math flag).

∀a ∈ R :
√
a ∗ a = |a | (1)

In order to apply this transformation, the compiler must
detect occurrences of

√
a ∗ a in the IR code and replace them

with a call to the abs function. The generation of the new
function call is trivial, but the detection of even a simple
pattern like

√
a ∗ a requires some care when implementing

it manually in a complex code base such as LLVM.
In Figure 1 (a), we can see the CAnDL program for the

analysis. It states that a section of LLVM code is eligible for
optimization if seven individual constraints simultaneously
hold on the values sqrt_call, sqrt_func, square, a.

The lines 2-8 each stipulate one of these constrains and they
are joined together with the logical conjunction operator.
This CAnDL program can be compiled with our CAnDL

compiler into LLVM analysis functionality and (b)-(f) show
the results of running it on an example program. In (b), we
can see a simple C program that calls the sqrt function
twice with squares of floating point values. Below this, in (c),
we see LLVM IR that is generated from the C code. I involves
two fmul instructions to generate the squares via a floating
point multiplication and two calls to the sqrt function with
the respective result.
The CAnDL program detects two opportunities to apply

the transformation, which are shown in (d) and (e). Both
solutions assign values fromwithin the IR code to each of the
variables in the CAnDL program such that all constraints are
fulfilled. The transformation functionality (f) that generates
the optimized code in (g) follows directly.

While this simple example illustrated the main steps in our
scheme, we wish to detect much more complex structures
in practice. CAnDL has powerful modularity functionality
built in that allowed us to formulate common computational
idioms such as:

• sparse and dense linear algebra
• generalized reductions and histograms
• stencil kernels

We used the generated analysis functionality as the base
for code transformations that map C/C++ programs onto
heterogeneous hardware and achieved speedups from 1.26×
to over 20× on embedded and discrete GPU configurations.

