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Abstract. Deterministic parallel programming languages are attractive
as they do not allow data races, deadlocks, or similar kinds of concurrency
bugs that are caused by unintended (or poorly understood) parallel
execution. We present here a simple programming model for deterministic
parallel programming that is based on roles. The programmer specifies the
role that an object plays for a task (e.g., the readonly role), and compiler
and runtime system together ensure that only those object accesses are
performed that are allowed by this role. An object may play different
roles in the course of a program’s execution, giving the programmer
considerable flexibility in expressing a parallel program.
The model has been implemented in a Java-like language with references
and object sharing. Preliminary results indicate that the runtime overhead
is moderate (compared to standard Java programs), and that the compiled
programs achieve substantial parallel speedups.

1 Introduction

Deterministic parallel programming languages avoid bugs caused by the unin-
tended or poorly understood parallel execution of programs. These languages
attempt to make concurrency bugs impossible by design [23, 5, 24, 37, 38].

Recently, several projects proposed static effect systems to support determin-
istic parallel programming (dpp) for imperative and object-oriented languages
[6, 20, 25, 18]. In such systems, the programmer declares the side effects of tasks
and methods by indicating the memory regions that are read or modified. These
effect specifications are then used by the compiler or the runtime system to check
that tasks with interfering effects are not executed in parallel.

Memory regions as used in effect systems may allow a precise description of
which memory locations are read or modified by a program unit. However, object-
oriented programs are not structured (or documented) based on memory locations
but instead use objects as the unit of reasoning. Memory locations provide little
abstraction and are at too low a level. Since objects are the foundation of object-
oriented programs, our approach to dpp is based on objects. The first idea is to
leverage the concept of roles, which have a long-standing tradition in sequential
object-oriented programming and modeling, where they are used to characterize
the different “roles” an object may assume when collaborating with other objects
[28, 30, 21, 15, 31]. Our work builds on this foundation and uses roles as the key
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abstraction to specify and reason about parallelism. Together with the concept
of role transitions, roles form the basis for a new object-oriented dpp model.

In this model, every object plays a role in each task, and these roles change
dynamically when tasks start or finish. Because the role of an object defines the
legal interactions with that object, roles provide a concise way to reason about,
document, and specify the effects of concurrent tasks. In contrast to effect systems,
the model does not focus on pieces of code and their effects on memory regions;
instead, it focuses on objects and the roles they play in parallel – hence the name
Parallel Roles. By employing a specific set of roles and role transition rules, the
model guarantees that tasks do not interfere. Noninterference is not checked
at compile time or before a task is started, like in effect systems; instead, it is
enforced during the execution of tasks. However, unlike in speculative systems,
noninterference is enforced deterministically and without rollback.

This dynamic approach makes it possible to design dpp languages with simple
program annotations, without the need for special syntactic constructs for parallel
execution, and without any kind of aliasing restriction. To illustrate these points,
we give an overview of a roles-based, Java-like language we call Rolez. This
language enables programmers to parallelize a program by simply marking a
method as a “task” and declaring one of three possible roles for its parameters:
readwrite, readonly, or pure. When a task is invoked, it is executed in parallel
to the invoking code, while the runtime system prevents the two concurrent parts
of the program from interfering, based on the declared roles.

def parallelEncrypt(plaintext: Array[byte],
tasks: int): Array[byte] {

val encrypted: Array[Array[byte]] = ...
for(var i = 0; i < tasks; i++)

start encrypt(plaintext, encrypted.get(i), i);
return merge(encrypted);

}

task encrypt(src: readonly Array[byte],
dst: readwrite Array[byte],
partition: int): void {

...
}

Fig. 1. Rolez example. The role declarations
are highlighted in green and orange.

Figure 1 illustrates the simplic-
ity of Rolez in a snippet of an en-
cryption program we use in our eval-
uation. The encryption scheme is
block-based, so different parts of the
data can be encrypted in parallel.
Note that for the sake of clarity,
some annotations are left out; Sec-
tion 3.2 explains what additional an-
notations are required. The encrypt
task has two main parameters: src
and dst, both of type Array. The
task declares the readonly role for the src array, which the task only reads, and
the readwrite role for the dst array, to which the task writes the encrypted data.
In addition, the encrypt task has a parameter that defines the part of the src
array that should be encrypted. The parallelEncrypt method achieves parallelism
by creating multiple destination arrays and starting a separate encrypt task for
each of them. Noninterference is guaranteed in two ways: First, the plaintext
array plays the readonly role in all tasks, which means that it cannot be modified
by any of them. Second, every task writes to a separate destination array. In
terms of roles, a destination array that plays the readwrite role in one task plays
the pure role in all other tasks (including the parent task), meaning that it is
inaccessible. However, as soon as all tasks have finished, all destination arrays are
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readwrite again in the parent task, so they can be merged into a single array.
When the merge method in the parent task tries to read from the destination
arrays, it is automatically blocked until all encrypt tasks have finished.

To demonstrate the viability of roles-based languages, we implemented a
prototype compiler and runtime system for Rolez and use a suite of parallel
programs to assess its effectiveness. These programs contain a range of parallel
patterns that are expressible with the three mentioned roles. All programs achieve
substantial speedups over a sequential Java version and exhibit a reasonable
runtime overhead compared to a manually parallelized Java programs.

To summarize, the key contributions of this paper are the following:
1. an object-oriented parallel programming model, based on three roles: readwrite,

readonly, and pure that guarantee determinism (Section 2);
2. an overview of the design of Rolez, a roles-based, Java-like dpp language that

requires only simple role declarations from a programmer (Section 3);
3. a preliminary evaluation of the Rolez prototype for 4 parallel programs. Rolez

can express many parallel patterns found in these programs and achieves
substantial speedups over sequential Java for most of them (Section 4).

2 The Parallel Roles Model

This section presents the Parallel Roles programming model. We first present a
simple core version for single objects and then extend it to cover object graphs.

2.1 Core Parallel Roles
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Fig. 2. The components of an
object: fields, methods, roles

The main idea behind Parallel Roles is to use the
object, the key concept of object-oriented program-
ming (oop) as the basis to reason about concurrent
effects and parallelism. In the standard oop model
an object is a collection of fields, which contain the
object’s state, plus a collection of methods, which de-
fine the object’s functionality. In the Parallel Roles
model, every object has a third component: the
roles it currently plays for the different tasks in the
program. This is illustrated in Figure 2.

The fields and methods of an object define the object’s sequential behavior.
That is, they define how the object behaves when other objects interact with it
in a single task. On the other hand, the roles of an object define the object’s
concurrent behavior. Specifically, they define which interactions are legal in which
tasks and what happens when an illegal interaction occurs. Like the content of
an object’s fields, the roles an object plays may change over time. However, in
contrast to the fields’ contents, which (in general) can be modified arbitrarily,
the changing of roles follows strict rules. These role transition rules restrict
the combinations of roles an object may play in different tasks at the same
time. Those restrictions in turn guarantee noninterference and, by extension,
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determinism. In the following paragraphs, we explain these core concepts, roles,
tasks, and role transitions, in more detail.

pure readonly readwrite
final field read 3 3 3

any field read 7 3 3

field write 7 7 3

Fig. 3. Operations permitted by the roles

Roles The role of an object de-
fines how other objects may interact
with that object, i.e., which kinds
of field operations they may per-
form and, by extension, which meth-
ods they may invoke. There are
three roles: readwrite, readonly,
and pure. readwrite permits both field read and field write operations, while
readonly permits only read operations. pure permits neither, except if a field is
final (i.e., it cannot be modified, as in Java); then it may be read. Final fields are
treated specially because they can never be the source of interference. Figure 3
summarizes these rules.

The set of permitted field operations also defines the set of permitted methods.
readwrite permits calls to any method, while readonly permits only calls to
methods that do not modify the target object. pure permits only calls to pure
methods, which are the object-oriented counterpart of a pure function: They are
side-effect free (i.e., they do not write to any of the target object’s fields) and
their result is always the same, given the same target object (i.e., they do not
read any of the target object’s non-final fields). As an example, pure for some
Account object would only permit calls to getAccountNo() (assuming account
numbers are immutable), readonly would also permit calls to getBalance(), and
readwrite would permit calls to all methods, including withdraw().

Tasks and Role Declarations Tasks are execution contexts, like threads. When the
execution of a program begins, all objects interact with each other in the main
task. A task may start other tasks (called child tasks) and thereby create multiple
concurrent execution contexts. While tasks are similar to threads, there is a key
difference: When defining a task, the programmer needs to declare the role that
each object is supposed to play in that task. With these role declarations, the
programmer controls the role transitions that objects perform, as described next.

Role Transitions As mentioned earlier, there are rules about when and how the
roles of an object change, i.e., when and how an object performs a role transition.
Most importantly, role transitions only take place when a task starts or finishes.
When a new task starts, every object for which the task declares a role performs
a role transition such that its role in that task matches the declared one. Hence,
at the beginning of a task, every object plays the declared role in that task.
However, a role transition may also change the role an object plays in the parent
task (the task that starts the new task). For example, this is the case if the
new task declares the readwrite role for an object. In such a case, the object
becomes pure in the parent task, to prevent interference. Therefore, while an
object is guaranteed to play the declared role at the beginning of a task, a role
declaration does not state that the object plays this role for the whole duration
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1. When an object is created in a task t, it
plays the readwrite role in t and the pure
role in all other tasks.

2. When an object o plays the readwrite role
in a task t, t may share o with a new task
tn that declares the readwrite role for o.
When tn is started, o becomes readwrite
in tn and pure in t.

3. When an object o plays the readwrite or
readonly role in a task t, t may share o with
a new task tn that declares the readonly
role for o. When tn is started, o becomes
readonly in t and tn.

4. Any object o may be shared with a task t
that declares the pure role for it. No tran-
sition takes place for o when t is started.

5. When a task t that declared the readwrite
role for an object o is about to finish, t
waits until o is readwrite; then, t finishes
and o becomes readwrite in t’s parent task.

6. When a task t that declared the readonly
role for an object o is about to finish, t
waits until o is readonly. After t has fin-
ished, if t’s parent tp is the only task left in
which o is readonly, o becomes readwrite
in tp. Otherwise, o stays readonly in tp.

7. When a task that declared an object o as
pure finishes, o performs no role transition.

8. When a task t is about to finish, t waits un-
til every object o created in t (or a child of
t) plays the readwrite role; then, t finishes
and o becomes readwrite in t’s parent tp
(if tp may reach o via some reference).

Fig. 4. The core role transition rules

of the task. What a role declaration does state is that the object may never play
a more permissive role than the one declared, in either that task itself or any
task that is (transitively) started by it. That is, an object may never play a role
that permits an operation the declared role does not permit. For example, if the
declared role of an object is readonly, this object can never play the readwrite
role in that task, since readwrite is more permissive than readonly.

The rules in Figure 4 define when and how the roles of an object can change.
As we explain shortly, these rules are designed such that they guarantee noninter-
ference for every object. Rule 1 concerns newly created objects, while Rules 2–4
concern the starting of tasks and Rules 5–8 the finishing of tasks.

Figure 5 illustrates these rules by showing a series of role transitions an object
can go through. Initially, when the object is created in task t1, it is readwrite in
t1 and pure in the tmain task. It is then shared with two tasks: t2, which declares
it as readwrite, and later t3, which declares it as readonly. When t2 and t3 start
and finish, the object performs a role transition. After t3 has finished, it is again
readwrite in t1. Finally, t1 finishes and the object becomes readwrite in tmain.

Guarding An object may never play a role that is more permissive than the
role declared in a given task. However, the object may temporarily play a
less permissive role. When this happens, some operations may become illegal,
despite being legal under the declared role. For example, if an object is declared
readwrite in a task, it might play the readonly role for some time, because it
was shared with another task. This discrepancy between declared and current
role is the subject of guarding. The idea of guarding is to wait until the current
role equals the declared role: When an operation is performed that is legal under
the declared but not under the current role of the target object, this operation is
not an error but instead is blocked until the object plays its declared role again.

We illustrate guarding with a simplified Rolez snippet (from a program we
later use for the evaluation) and a corresponding illustration, in Figure 6. This
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Fig. 5. Illustration of the role transition rules for an object. The gray arrows from the
left to the right are tasks, the black boxes represent the same object in different points
in time, and the small colored boxes show the roles the object plays in each task.

def animate(scn: Scene): {
val img = new Image(w, h);
while(scn.time < scn.length) {

render(scn, img);
start encode(img);
animateStep(scn);

}
}
task encode(img: readonly Image): {

...
}

render
animate

Step
render

start

GUARD animate
Step

GUARD
render

start

tmain

t1 t2

finish finish

Image

RW

tmain t1 t2

Image

RO RO

tmain t1 t2

Image

RW

tmain t1 t2

Image

RO

tmain t1 t2

RO

encode encode

Fig. 6. Guarding example. The left side shows (simplified) Rolez code and the right
side illustrates how guarding prevents encode from interfering with the render method.

program renders animated 3d scenes and encodes the rendered images as frames
in a video file. The main loop consists of three steps: First, the scene is rendered
for a fixed point in (animation) time, then the resulting image is encoded as a
video frame, and finally an animation step is performed to update the scene for
the next frame. The encoding and the animation step can be done in parallel,
which is why encode is declared and invoked as a task. Because encode only needs
to read the image, it declares it as readonly. When the encode task starts, the
image performs a role transition and becomes readonly also in the “main” task.
While animateStep does not modify the image, the rendering in the next iteration
does. In case the render method begins execution before the encode task has
finished, guarding blocks the execution of render to prevent it from interfering
with the encoding. Once encode finishes, the render method resumes execution.
Note that in the version of the program used for the evaluation, two image buffers
are used, to enable the encode task to also execute in parallel to render.

Properties We now examine the properties of Parallel Roles. First of all, the
transition rules ensure the soundness of role declarations, i.e., that no object may
play a more permissive role than its declared role in both the task that declared



Parallel Roles for Practical Deterministic Parallel Programming 7

it and any task it (transitively) starts. This follows from two observations: First,
no transition rule permits an object with a declared role to play a role it has not
played before in a given task. And second, none of the rules permit an object
to be shared with a task that declares a more permissive role than the object
currently plays. Note that Rule 8 does permit objects to play a more permissive
role (readwrite) in the parent task than before (pure), but since these objects
were newly created, they do not have a declared role in the parent task.

Second, the transition rules guarantee that no object ever plays the readwrite
role in one task while it plays the readwrite or the readonly role in another task.
We call this property exclusiveness of readwrite and we show it using induction:
When an object is created, it is readwrite for the creator task and pure for all
other tasks (Rule 1). This is the base case. For the inductive step, we assume the
object is either readwrite in a single task or readonly in a number of tasks, but
in both cases pure for all other tasks. After any start transition (Rules 2 or 3),
this rule still holds. After any transition at the end of a task (Rules 5, 6, or 8),
the condition also still holds. In particular, Rule 6 ensures that an object that is
readonly in any task can only become readwrite again once there is no task
left in which it is readonly. Therefore, no series of transitions may ever violate
the exclusiveness of readwrite.

Exclusiveness of readwrite, combined with guarding and the definitions of
permitted operations in Figure 3, implies that if an object can be modified in one
task, then the mutable parts of it cannot be accessed by any other task until the
modifying task has finished. Thus, the model guarantees noninterference. Note
that two mechanisms to prevent interference are combined: (i) An operation that
is illegal with respect to the declared role of an object results in an error. This
could be a runtime or a compile-time error, depending on the language. (ii) An
operation that is illegal with respect to the current role of an object, but not
with respect to its declared role, is blocked by guarding until the object plays a
role under which the operation is legal.

Note that noninterference is much stricter than data race freedom. Since the
exclusiveness of readwrite holds for all objects in the program, no modification
of a task t can be observed by any other task, as long as t is running. Therefore,
tasks cannot communicate, except for passing arguments and waiting for each
other’s results. This restriction is the key to guarantee determinism. However,
Parallel Roles could be extended with nondeterministic roles to enable inter-task
communication for parallel applications that profit from nondeterminism.

Since noninterference is achieved in part by blocking the execution of opera-
tions, it may seem like the model is prone to deadlock. However, this is not the
case: Whenever an operation is blocked in a task t1, it is because the target object
currently plays a less permissive role than its declared role. This can only be the
case if t1 shared the object with another task t2. Since objects can only be shared
when a task is started, t2 must be a child task of t1. Therefore, tasks can be
blocked only by child tasks, and this property precludes cyclic dependences. Thus,
Parallel Roles not only guarantees noninterference, but also deadlock freedom.
Together, these two properties imply that Parallel Roles guarantees determinism.
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To summarize, Parallel Roles combines roles, which determine the legal
operations for an object, with transition rules, which determine the possible
combinations of roles an object may play in parallel. Tasks are prevented from
interfering using a combination of runtime or compile-time checking and guarding.

2.2 Object Graphs

A shortcoming of the transition rules presented so far is that they do not consider
objects with references to other objects. That is, they do not define what happens
to objects that are reachable from an object that performs a role transition.

A safe but impractical definition would be that objects are simply unaffected
by the role transitions of their referrers. However, with such a definition, an
object could easily break when shared with another task, because objects it
depends on would play a different role than itself. For example, consider a Bank
object, which contains references to all Accounts of that bank. The Bank has a
method payInterest, which computes and deposits the yearly interest for each of
its accounts. If such a Bank object was shared with a task t that declares it as
readwrite, calling the payInterest method in t would fail, since all of its Account
objects would be pure and their balance could not be accessed in t.

We employ a practical, but simple and safe way to handle object graphs.
Expressed as two additional role transition rule, it states:
9. Whenever an object o is about to perform a role transition, all objects that are

reachable from o perform the same transition. The transitions only take place once
all these objects play one of the roles o is required to play. The implicitly declared
role of these objects is the same as for o. In case an object is reachable from multiple
objects that perform different role transitions at the start of a task, that object
performs the transition that makes it play the most permissive role in the new task.

10. When a task t that declared the readwrite role for an object o is about to finish,
t waits until all objects that were reachable from o when t started are readwrite.
Then, t finishes and all these objects become readwrite in t’s parent task.

With Rule 9, when an object is shared with a task, the task will not start until
that object and all objects that are reachable from it play the required role. For
example, when a Bank object is shared with a task that declares it as readwrite,
not only the Bank itself, but also all of its Accounts must play the readwrite role
before the task may start. Once they do, all these objects perform a transition
and become readwrite for the new task. Now, payInterest can be successfully
invoked in that task, because all required objects play the readwrite role.

Finally, Rule 10 concerns object graphs that are shared with a task that
unlinks some objects in the graph. Since these objects may still be used in the
parent task later, they also revert to their previous roles once the task finishes.

3 Rolez Language Overview

This section gives an informal description of a concrete programming language,
Rolez, which implements the Parallel Roles model presented in the previous
section. It is a Java-like language with a roles-based type system.
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1 class App {
2 def pure calcInterest(balance: int): int {
3 return (the Consts.intrstRate * balance) as int;
4 }
5 task pure payInterest(acc: readwrite Account): {
6 val intrst = this.calcInterest(acc.getBalance);
7 acc.deposit(intrst);
8 }
9 task pure main: {

10 val acc = new Account;
11 acc.deposit(1000);
12 this start payInterest(acc);
13 }
14 }

15 class Account {
16 var balance: int
17 def readwrite deposit(i: int): {
18 this.balance += i;
19 }
20 def readwrite withdraw(i: int): {
21 this.balance -= i;
22 }
23 def readonly getBalance: int {
24 return this.balance;
25 }
26 }
27 object Consts {
28 val intrstRate: double = 0.015
29 }

Fig. 7. Rolez code example for tasks, role declarations, and global singleton objects

3.1 Tasks and Role Declarations

Declaring and Starting Tasks In Rolez, tasks are declared in the same way as
methods. Two different keywords, def and task, are used to distinguish the two.
Likewise, starting a task is expressed in the same way as invoking a method, except
for the keyword start, which replaces the dot. When an object is supposed to be
shared with a task, the programmer simply creates a corresponding parameter
for that task and passes the object as an argument when starting it. Figure 7
shows a Rolez example program that illustrates these points. Lines 2 to 8 contain
the declarations of a method and a task, while Lines 11 and 12 show how these
are called or started, respectively. Note that void return types can be omitted.

Role Declarations To declare the role of an object in a task, the programmer
annotates the corresponding task parameter with that role, as shown on Line 5.
This line indicates that the payInterest task requires a single object to be shared
with it, namely an Account object that plays the readwrite role. The parameter is
declared as readwrite because the payInterest modifies the balance of the given
account when calling deposit on Line 7. So when this task is started on Line 12,
the Account object that is passed as an argument performs a role transition and
becomes readwrite for the payInterest task and pure for the main task.

Incidentally, both the payInterest and the main task have another parameter:
the “this”. The role for “this” is declared right after the task keyword and is pure
for both of these tasks. This means that the App instance does not perform any
role transition (see Rule 4). This instance is created implicitly before the program
starts and is the target (the “this”) of both task start invocations (including the
implicit start of the main task at the start of the program execution).

Note that, in Rolez, not only task parameters but also method parameters
and other constructs have role declarations. Section 3.2 elaborates these aspects.

Global Objects How can Rolez guarantee that only objects that have been shared
with a task are accessed in that task? Simply, a task can only access objects that
were passed to it as arguments (including “this”), or that are reachable from
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such. (As per Rule 9, such reachable objects perform the same transitions as their
referrers and implicitly have the same declared role.) That is, no objects can be
globally accessed in Rolez, in contrast to, e.g., objects in static fields in Java.

However, there is one exception: A programmer may define global singleton
objects, using the object keyword instead of class. To prevent tasks from in-
terfering when they access such global objects, these objects are immutable. In
other words, they are (conceptually) initialized at the beginning of the program
and then they permanently play the readonly role for all tasks. An example for
the declaration of such a singleton is shown in Figure 7 on Lines 27 to 29, while
Line 3 shows how this singleton is accessed using the keyword “the”.

3.2 Role Type System

Rolez uses a static type system to report erroneous operations at compile time.
Recall that there are two kinds of illegal operations with regard to roles, only one
of which is considered erroneous. The first kind is a temporarily illegal operation,
which is illegal only with respect to an object’s current role. Such an operation is
not considered an error, but is delayed until it becomes legal, using guarding. The
second kind of an illegal operation is illegal with respect to an object’s declared
role. Such an operation can never become legal and must be reported as a role
error. In Rolez, role errors are reported at compile-time, using a roles-based type
system. In this section, we give a brief, informal overview of this type system.

Note that the Rolez type system does not guarantee noninterference on its
own, unlike static effect systems. Only in combination with guarding can Rolez
guarantee that tasks do not interfere. Thus, the Rolez type system is much
less complex than static effect systems or permission-based type systems (see
Section 5) and does not, e.g., impose any aliasing restrictions.

Role Types The Rolez type system is an extension of the class-based type system
known from Java and other oop languages. Every variable in such a language
has a type that corresponds to a class. A sound type system guarantees that,
at runtime, a variable always refers to an object that is an instance of the class
that corresponds to the variable’s type (or a subclass thereof). Therefore, when
accessing a field or calling a method on a variable, the compiler can check whether
this member exists in that class, or else report a type error. Likewise, by including
an object’s declared role in the static type of variables that refer to that object,
the Rolez type system enables the compiler to report role errors.

A static type in Rolez, called a role type, consists of two parts, the class part
and the static role. The class part corresponds to the class of an object, while the
static role corresponds to the declared role of an object in the currently executing
task. An example for a role type is readwrite Account, where readwrite is the
static role and Account is the class part.

In Java-like languages, a variable may not only refer to instances of the very
class that corresponds to the variable’s type, but also to instances of subclasses
thereof. In Rolez, the same applies to the static role: A variable may refer to
objects whose declared role is a subrole of the variable’s static role. A role is
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class Object {
...

}
class Account extends Object {

...
}
class SavingsAccount extends Account {

...
}

pure Object

pure Account

pure SavingsAccount

readwrite Object

readwrite Account

readwrite SavingsAccount

readonly Object

readonly Account

readonly SavingsAccount

: is subtype of

Fig. 8. Rolez type hierarchy example: source code and corresponding type hierarchy

a subrole of another role if it is the same or a more permissive role. Hence,
subtyping applies to both the class part and the static role.

Figure 8 illustrates the subtype relation with an example consisting of three
classes. In Java, this code would lead to a type hierarchy with a linear structure
and three types that correspond to the three classes. On the other hand, in Rolez
the code results in a lattice containing nine role types that correspond to all
possible combinations of roles and classes.

Type Declarations and Type Checks In Rolez, like in other languages with a static
type system, all local variables, parameters, fields, and methods need a type
declaration, in general. However, Figure 7 shows that type inference is applied
to local variables to reduce the programmer’s annotation burden. If a variable
is assigned right when it is declared, the variable’s type is inferred from the
right-hand side of the assignment (Lines 6 and 10). For method parameters, type
inference is not possible under modular compilation, therefore types must be
fully declared. This is true also for the “this” parameter of methods (and tasks),
although the class part of the type is implicit, because it corresponds to the
method’s class. The role part is still necessary though (Lines 17, 20, and 23).
These type declarations are used by the compiler to perform type checks, with
the ultimate purpose of preventing operations that are not permitted under the
declared role of an object.

Most type checks in Rolez are standard, like “the right-hand side type of
an assignment must be a subtype of the left-hand side type”. The roles-specific
checks concern field accesses. A field may only be read if the target’s role is
“at least” readonly (or if the field is final). Likewise, a field may only be written
to if the target is readwrite. Another difference between the field access rules in
Rolez and other oop languages is that the type of a field read expression depends
on the role of the target expression, and is not simply the declared type of the
field. The reason for this difference is the object graphs extension introduced in
Section 2.2. With this extension, the declared role of an object that is reachable
from a task parameter corresponds to the declared role of that parameter. To
reflect this in the type system, the role of a field-read expression must always be
a superrole (the same or a less permissive role) of that of the target expression.

The example in Figure 9 illustrates how this last rule ensures that the static
role of an object that is reachable from a task parameter is always a superrole of
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1 task pure getOwnerName(a: readonly Account): pure String {
2 val owner: readonly Client = a.owner;
3 return owner.name;
4 }

5 class Account {
6 var owner: readwrite Client
7 ...
8 }

Fig. 9. Rolez example to illustrate the field-read type check

that object’s implicitly declared role. The getOwnerName task declares an Account
parameter with the readonly role. When an Account object is shared with this
task, it becomes readonly, like the Client object that the owner field on Line 6
refers to. When this field is read on Line 2, the role of the a.owner expression is
readonly, even though the type of the owner field is readwrite Client. Therefore,
this expression can only be assigned to a variable of type readonly Client, making
sure that the Client object’s implicitly declared readonly role is respected.

4 Evaluation

In this section, we present a preliminary evaluation of the Rolez language that
shows that (i) parallel programs for non-trivial problems can be written in Rolez,
and (ii) parallel Rolez programs realize a speedup over both sequential Rolez and
Java programs, despite the runtime overhead of role transitions and guarding.

4.1 Experimental Setup
We implemented a Rolez prototype, i.e., a compiler and a runtime system, on top
of the Java platform. The runtime system is implemented as a Java library, while
the compiler, implemented with Xtext [1], transforms Rolez source code into Java
source code, inserting role transition and guarding operations as method calls
to the runtime library where necessary. The generated code is compiled using a
standard Java compiler and executed on a standard Java Virtual Machine (jvm).

The following programs were implemented in Rolez: idea encryption and
Monte Carlo financial simulation, both adapted from the Parallel Java Grande
benchmark suite [34]; a k-means clustering algorithm, as in the stamp Benchmark
Suite [10]; and a ray tracer that renders animated scenes (called animator). These
programs contain the following parallel patterns, all of which can be expressed in
Rolez: data parallelism, task parallelism, read-only data, and task-local data.

We measured the performance of each program on a machine with four Intel
Xeon E7-4830 processors with a total of 32 cores and 64 gb of main memory,
running Ubuntu Linux. As the Java platform we used OpenJdk 7. To eliminate
warm-up effects from the jit compiler in the jvm, we executed every program
5 to 10 times before measuring. Then we repeated every experiment 30 times
inside the same jvm, taking the arithmetic mean.

4.2 Results
First, we focus on the parallel speedup of the Rolez programs and compare it to
that of equivalent Java programs. Note that the Rolez programs reuse some Java
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Fig. 10. Speedup of parallel Rolez programs, compared to speedup of parallel Java
programs, for different numbers of tasks. All numbers are relative to single-threaded
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classes, such as System and Math, which contain native code, and also classes like
String and Random, to avoid the porting effort to Rolez. We manually ensured
that the use of these classes is deterministic. Figure 10 shows the speedups of
the Rolez and Java programs, relative to the single-threaded Java version, for
different numbers of tasks. Note the logarithmic scale of both axes.

All Rolez programs achieve substantial speedups. They outperform single-
threaded Java already with two tasks, and achieve maximum speedups of 7–20×.
The speedup they achieve is practically linear with up to 8 tasks, and for idea
and Monte Carlo even with 32 tasks. The plots also give a first idea about the
Rolez overhead. While for idea and Monte Carlo the speedup lines are almost
indistinguishable, the overhead is clearly visible for animator and k-means, where
the Java versions achieve substantially higher performance.

Figure 11 shows this overhead in more detail. For idea, the overhead stays
below 35% and for Monte Carlo even below 10%. In both of these programs, there
is a modest amount of sharing and, due to static analysis in the Rolez compiler,
almost no need for guarding. While there is more sharing in the animator program,
the overhead stays low for up to 8 tasks. With more tasks, a limitation of the
current incarnation of Parallel Roles shows: Since there is no built-in support for
data partitioning, data sets need to be split and merged explicitly, which may
result in a substantial overhead. Finally, k-means contains the most sharing and
therefore suffers most from the overhead caused by role transitions.

To summarize, while the runtime concepts of Parallel Roles may inflict a
non-negligible performance overhead, our prototype still delivers substantial
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parallel speedups. We expect that the performance of Rolez could be significantly
improved by a more advanced compiler with access to global program information
or runtime data (such as a jit compiler), or by more optimized guarding and role
transitions. However, we argue that the current Rolez prototype already provides
good performance for many applications, especially on personal devices, where
the number of cores has remained relatively small.

5 Related Work

Many approaches have been proposed to make parallel programming in some way
safer than with explicit synchronization. Recently, the deterministic-by-default
approach for imperative, object-oriented languages has sparked the interest of
the research community [23, 5, 24, 13]. In imperative languages, dpp is hard
because tasks may have effects on shared mutable state. If not restricted, the
nondeterministic interleaving of such effects leads to nondeterministic results [23].

The first imperative dpp language is Jade [22, 32], where the programmer
specifies the effects of a task using arbitrary code that is executed at runtime.
Though extremely flexible, this approach comes with a substantial drawback:
The correctness of effect specifications can only be checked at runtime. Such
checks impact performance and may lead to unexpected errors. The same applies
to Prometheus [2], where the programmer writes code that assigns operations to
different serialization sets, and to Yada [14], where sharing types restrict how
tasks may access shared data. Yada’s sharing types are similar in spirit to role
types, but they were not designed with compile-time checking as a goal.

To avoid these problems, static effect systems enable checking the correctness
of effect specifications at compile time. In fact, these systems typically even
check noninterference statically, avoiding runtime checks altogether. While early
systems like fx [26] can only express limited forms of parallelism, recent systems
like Liquid Effects [20] or Deterministic Effects [25] can handle many kinds of
parallelism, although not necessarily in an object-oriented setting. The effect
system used in Deterministic Parallel Java (dpj) [6, 4] and TweJava [18] brings
statically checked effects to Java-like languages. To support a wide range of parallel
patterns, it includes many features: region parameters, disjointness constraints,
region path lists, indexed-parameterized arrays, subarrays, and invocation effects.
This formidable list shows that dpj and TweJava require a programmer to
understand many and potentially complex concepts. Parallel Roles aims to
simplify dpp by using the concepts of roles and role transitions to specify the
effects of tasks. In addition, the concept of guarding enables parallelization by
simply marking methods as tasks and invoking them like normal methods.

Other effect systems have been proposed to make parallel programming less
error-prone, e.g., by enforcing a locking discipline or by preventing data races
or deadlocks [7, 19]. These systems combine effects with ownership types [12, 11]
and generally couple the regions and effects of an object with those of its owner.
This idea resembles our handling of object graphs, which can be interpreted as
coupling the role of an object with that of its “owners”, i.e., the objects that
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have a reference to it. Even though this simple idea of “referrer as owner” has
the advantage that no additional notion of ownership is involved, combining roles
with a more advanced concept of ownership would be interesting future work.

An alternative to effects are systems based on permissions [8, 9, 3]. Permissions
accompany object references and define how an object is shared and how it may
be accessed. In Æminium [37, 38] for instance, permissions like unique, immutable,
or shared keep track of how may references to an object exist and specify the
permitted operations. The system then automatically extracts and exploits
concurrency. Similarly, the Rust language [27] features mutable or immutable
references and guarantees that there are either a single mutable or multiple
immutable references to an object at any time. Permissions are more object-based
than effects and conceptually similar to our roles. However, roles and particularly
guarding are dynamic concepts and enable simpler language designs, at the cost
of some runtime overhead. For instance, while Æminium and Rust rigorously
restrict aliasing, Rolez is a simpler language that permits arbitrary aliasing.

Another approach for dpp is speculative execution, where the effects of tasks
are buffered by a runtime component and rolled back in case they interfere.
The two most well-known such approaches, Thread Level Speculation [35, 29,
36] and Transactional Memory [17, 33, 16] are not dpp models in a strict sense:
The former automatically parallelizes sequential programs and the latter usually
provides no determinism guarantees. However, there are speculative approaches
that constitute dpp models: Safe Futures for Java [40] and Implicit Parallelism
with Ordered Transactions [39]. In both models, the programmer defines which
parts of a sequential program should execute asynchronously. The runtime then
executes them as speculative tasks, enforcing their sequential order. In Parallel
Roles, speculation is not necessary, because interfering operations are either
delayed by guarding or cause an error (in the case of Rolez, at compile time).

6 Conclusion

During the last few years, much research about deterministic parallel programming
has focused on static effect or permission systems. In this paper, we presented
Parallel Roles to leverage roles to express the kinds of access that are permitted
for an object. Parallel Roles puts the focus on objects and presents a simple
object-oriented way to specify and reason about effects of parallel computations.
This paper explores parallel programming with just three simple roles; these are
powerful enough to express a wide range of parallel patterns and applications
without the burden of complex program annotations. While a certain runtime
overhead seems to be the necessary toll for this simplicity, a preliminary evaluation
indicates that the overhead is moderate: The implementation of a roles-based
language achieves substantial speedups over the corresponding sequential Java
version. Furthermore, past programming language innovations such as garbage
collection or runtime type checking have shown that a modest runtime overhead
is a small price to pay for more safety, simplicity and programmer productivity.
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