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Abstract—Loop-level compiler optimizations are applied in a
complex process with no guarantee that the code produced is
optimal. Compilers also struggle to maintain a stable perfor-
mance on different loops with the same semantics. This paper
presents an analysis of the stability of the compilation process
and shows potential for state-of-the-art compilers to improve code
performance. In the study, loop nests are first extracted from
benchmarks; then, sequences of source-level loop transformations
are applied to these loop nests to create numerous semantically
equivalent mutations; finally, the impact of transformations on
code quality in terms of locality, dynamic instruction count, and
vectorization is analyzed for different compilers. Our results show
that up to 47% of the loops can be improved with at least a
1.15x speedup by this process while the average speedup can
reach 1.6x for the improved loops. In addition, we propose a
novel stability score that demonstrates the difference in stability
from the studied compilers. The study concludes that the effect
of source-level transformations varies among compilers, and the
evaluated compilers have long ways to go until reaching stable.

I. INTRODUCTION

Two of the most important outcomes after sixty years of
compiler research are powerful methods for program analysis,
and an extensive catalog of program transformations. Although
there is room for improvement in these areas, we can say
that the technology developed rests on solid ground and is
well understood. On the other hand, the process of program
optimization, which guides the application of transformations
to achieve good performance, is not well understood. It is
difficult to predict how an optimizing compiler and the op-
tions it presents a programmer will affect the quality of the
generated code. This is why the standard way of selecting the
best compiler command options is to use empirical methods
(e.g. [11, [2D).

This paper aims to measure the effectiveness of the opti-
mization pass of the three most popular compilers today: GCC,
ICC, and LLVM (Clang). It focuses on the compilation of for
loops because this is the language construct whose analysis
and transformation is best understood. We chose to focus on
code performance headroom and stability, but other character-
istics can also be evaluated using the same approach. We say
that a compiler is stable if it produces the same target code
for all versions of the source code resulting from semantic-
preserving transformations. The performance headroom is a
measure of the effectiveness of the optimization process.

Although we can only obtain a lower bound of this headroom
by trying limited combination of transformations, we expect
this result, together with a figure of merit for stability, to be a
useful approximation to the absolute performance headroom.
And, by repeating the measurements along the years, these
values could give us a measure of progress.

In this study, we used a wide variety of loop types obtained
using an extractor that we developed and collected from 13
benchmarks suites and other sources, such as software libraries
and machine learning kernels. The extractor separates for
loop nests from the source code of the original applications
and then builds standalone codelets that can be executed
and measured. Only loop nests consuming more than 1,000
processor cycles were used in this study to limit the effect of
measurement overhead. As a result, between 1,175 and 1,266
loop nests are investigated, depending on the compiler.

Because source-to-source transformations as a compiler
pre-pass is a proven technique [3], [4] to study compiler
effectiveness, we apply such transformations to obtain multiple
semantically-equivalent versions of each loop for estimating
headroom and stability. These versions are called mutations in
this paper, and an automated tool we developed that generates
them is called the mutator. Our source-to-source transforma-
tions are combinations of five basic yet most effective loop
transformations: interchange, tiling, unrolling, unroll-and-jam,
and distribution [5]. From the loop nests that we studied, a total
of 64,928~66,392 mutations are generated. The mutations are
then compiled by each compiler we study. Because vectoriza-
tion support is ubiquitous in modern processors and can have
significant impact on performance, we also experimented with
different vectorization settings during the compilation process.
The execution times of the compilers’ outputs are measured
together with a number of hardware performance counters to
help us better understand the effect of the transformations.
The performance of each of the mutations is then compared
to that of the original loop. Because the mutations are obtained
by applying transformations that are widely used and can be
easily implemented by any compiler, their effect is a good
indication of whether or not there is room for improvement.
Our paper demonstrates that even though these transformations
are implemented by the compilers at hand, it is not enough,
and that the application of the transformations in just the



right parameters can yield noticeable improvements in the
performance of the resulting code. Also, the stability of a
compiler is measured by how much the performance fluctuates
among semantically equivalent mutations.

Our results show that there is a significant performance
headroom for each of the three compilers evaluated. The
application of source-to-source transformations as a pre-pass
alone results in 25.9~36.6% of the loops studied seeing a
performance improvement of 15% or more. By further tuning
vectorization settings, the numbers rise to 35.7~46.5%, and
a loop nest can expect a 1.61x~1.65x speedup on average
if we manage to find a beneficial mutation and/or better
vectorization setting for it.

We then analyzed how each of the five elementary trans-
formations applied by the mutator affects performance. We
used hardware performance counters and manual inspection
for each transformation to establish a correlation between the
transformation and execution behavior in terms of locality,
number of instructions executed, and vectorization. Three of
the transformations resulted in interesting observations, we
discuss their effect on specific loops to illustrate the complex
ways in which they affect compiler outputs and challenges
faced by compiler writers in developing stable optimization
strategies. In addition, the effectiveness of the compilers’
vectorizers is further evaluated by measuring the accuracy of
their profitability model and investigating how source-level
transformations affect the success rate and effectiveness of
vectorization.

We quantified a compiler’s degree of stability by introducing
a stability score and found that the evaluated compilers are
far from being stable. We also investigated if source-level
transformations are able to narrow the performance gap among
compilers and quantitatively confirmed it by devising a con-
vergence score. Furthermore, our analysis indicates that as the
number and complexity of the optimization passes in modern
compilers increase, it becomes increasingly difficult to predict
the impact of source-level transformations; thus, it becomes
harder for programmers (and source-level optimizers such as
polyhedral compilers) to control the behavior of their code by
altering the loop structure, and the fact that different compilers
may react to the same transformation variously makes it even
more difficult.

The rest of the paper is organized as follows. In Section II,
we describe in detail how we extract loop nests and generate
mutations from them. Section III and Section IV present the
compiler settings and quantitative results, respectively. In Sec-
tion V, we analyze how different transformations affect per-
formance. In Section VI, we further explore how vectorization
setting impacts performance. Finally, Section VII discusses
related work, and Section VIII presents our conclusions.

II. LooP EXTRACTION AND MUTATION

Our study focuses on for loops written in C extracted from
a variety of benchmark suites. We developed two components
to study the impact of source-to-source transformations on
the compilation of a loop nest: a loop nest extractor and

a mutator, both based on the ROSE [6] source-to-source
compiler infrastructure.

A. The Extractor

The extractor encapsulates loop nests from a benchmark ap-
plication into individual standalone codelets. It first identifies
for loops in benchmark source files by scanning the abstract
syntax tree (AST). It then instruments each loop to save all
input data to the loop. A loop nest may be executed multiple
times, e.g. inside a function that is invoked multiple times.
To save time, our system currently extracts data from only
one of the loop executions chosen via the reservoir sampling
algorithm. This algorithm grants each execution instance an
equal chance to be selected [7].

Next, the extractor copies the source code of the loop nest
to create a codelet. In a codelet, the loop nest is surrounded by
operations that (I) initialize variables and memory regions with
the captured data loaded from file, (II) record time via RDTSCP
instruction, which allows accurate timing measurements, (III)
read hardware performance counter values, (IV) use all the
data written in the loop body to generate output value(s), so
that the compilers do not remove operations as dead code, (V)
repeatedly execute the loop nest for 100 times and record the
median of the execution time. Variables and memory regions
are reinitialized before each re-execution. The cache state is
different from that of the original benchmark execution yet
consistent among re-executions (except for the first execution).
The codelets are thus completely self-contained and ready for
compilation and execution.

B. The Mutator

The extracted loop nests, now as standalone executable
codelets, are processed using a ROSE-based mutator to cre-
ate semantically equivalent mutations. The mutator applies a
sequence of source-to-source transformations to nests of for
loops of the form

for (i=1b; i<=ub; i+=step).

The available transformations are interchange, tiling, un-
rolling, unroll-and-jam, and distribution. These five transfor-
mations are among the best-known loop transformations and
relatively easy to implement. Therefore, they could be easily
added to any compiler if they are not currently present. For
each mutation, the mutator applies one or more of these
transformations in sequence with various parameters.

Because the number of mutations of a single loop nest
may grow exponentially as the number of transformation se-
quences and the selection of parameters to each transformation
increase, we had to impose limitations to the transformation
sequences so that the total number of mutations generated from
the extensive collection of loop nests that we study remains
reasonable.

First, the mutator does not explore the transformation space
exhaustively. It instead transforms the loop nests in a selection
of orders. The possible orders are subsets of:



interchange — unroll-and-jam — distribution — unrolling

interchange — tiling — distribution — unrolling

Thus, the maximum length of transformation sequence is 4.
These orders are chosen such that the transformations that only
operate on perfectly nested loops (all assignment statements
are contained in the innermost loop), namely interchange,
tiling, and unroll-and-jam are not applied after any trans-
formation that may render the loop nests imperfect, namely
distribution, unrolling, and unroll-and-jam.

Second, the parameters to each transformation are also lim-
ited. Table I shows the transformations and their parameters.
For interchange, we explore every possible permutation, and
the parameter for it is a number denoting the permutation in
lexicographical order. For tiling, we tile a single dimension
only, and parameters are the sizes used for strip mining plus
the loop level that is strip-mined. For unrolling, we only
unroll the innermost loop(s). If there are multiple loops at
the innermost level, the mutator will unroll all of them by the
same number of times. We use the unroll factor as parameter.
For unroll-and-jam, we apply it at each non-innermost level,
and the parameters are the loop level to be unrolled and the
unroll factor. For distribution, we distribute statements in the
innermost loop as much as possible based on the dependence
analysis result; hence, it does not take parameters.

Transformation Parameters Maximum #
of variation

Interchange Lexicographical permutation | depth!
number

Tiling Loop level, tile size (8, 16, 32) depth X 3

Unrolling Unroll factor (2, 4, 8) 3

Unroll-and-jam Loop level, unroll factor (2, 4) depth x 2

Distribution N/A 1

TABLE I: Transformations and their parameters

Although the above limitations confines the search space
of transformation sequences to a manageable size for each
loop nest, they also decrease the chance of finding the optimal
transformation sequence for a loop nest. Therefore, in this
study, we only aim to find lower bounds for performance
headroom and instability of the investigated compilers.

In addition to imposed restrictions, the number of mutations
is also limited by data dependence. Unrolling is the only trans-
formation we use that is guaranteed to always be semantics-
preserving. To ensure the legality of the other four, we use
PolyOptC [8] for dependence analysis. The mutator applies
only unrolling to loops that PolyOptC cannot analyze, such as
loops with non-affine expressions in array subscripts or loops
that cannot be expressed in polyhedral forms.

The depth and dependence graph of a loop nest determine
how many mutations are generated from it. Among the loops
we studied, up to 1,680 mutations were generated for a single
loop nest. We extracted 3,197 codelets from various sources
for this study, such as: benchmarks, audio/video codecs, deep
learning libraries, and machine learning kernels. In total, we
produced 100,219 mutations from these codelets; however, we

only used the results from loops whose execution time ex-
ceeded 1,000 cycles. The final number of loops and mutations
that we studied will be discussed in Section IV.

III. COMPILERS EVALUATED

We used the loop nests and their mutations to evaluate
recent versions of three widely used compilers: GNU Compiler
Collection (GCC) 6.2.0, Intel C++ Compiler (ICC) 17.0.1, and
Clang 4.0.0 (LLVM). The experiments were conducted on an
Intel Xeon E5-1630 v3 processor (Haswell microarchitecture,
32KB private L1 instruction cache, 32KB private L1 data
cache, 256KB private L2 cache, 10MB shared L3 cache)
with 32GB DDR4 2133 RAM. The CPU has invariant TSC
so that the readout from RDTSCP is accurate. To achieve
stable results, all executions were fixed to the same core with
dynamic frequency scaling, Intel Hyper-Threading, C-State,
and TurboBoost technologies disabled.

When compiling the loop nests and their mutations,
we turned on the following switches in addition to -03.
GCC: -ffast-math allows breaking strict IEEE com-
pliance so that floating point operations can be re-
ordered; —funsafe-loop-optimizations tells the loop
optimizer to assume that loop indices do not over-
flow, and that loops with nontrivial exit condition are
not infinite; —~ftree-loop—if-convert-stores allows if-
converting conditional jumps containing memory writes; ICC:
-restrict and -ipo help with alias analysis; Clang:
—-ffast-math provides similar benefit as that in GCC;
—-fslp-vectorize—aggressive enables a second basic
block vectorization phase. We instructed all three compilers
to optimize for the native architecture, which supports vector
extensions up to AVX2, and let the compilers’ default vector-
ization profitability models determine when to vectorize loops.

IV. RESULTS

This section presents the main results that we obtained.
We report the performance of the evaluated compilers on
the original loop nests in Section IV-A, present the general
statistics of mutations’ effects on performance in Section IV-B,
demonstrate the statistics of each transformation’s contribution
in Section IV-C, discuss how various benchmarks react to
mutations differently in Section IV-D, and finally propose
metrics to measure compiler stability and convergence effect
in Section IV-E and IV-F respectively.

A. Baseline Performance

To minimize the impact of timing noise, we only examine
loops with an execution time of at least 1,000 cycles. Conse-
quently, depending on the compiler, between 1,175 and 1,266
loops are included in the study. Table II lists the number of
loops and their mutations from different benchmarks that are
included for each compiler.

To compare the compilers’ performance on the baseline
loops, we only consider the 1061 loops that are shared by all
three compilers’ results. On average, GCC and Clang generate
code that is 1.06x and 1.27x slower respectively than ICC;



# of loops (# of mutations)
Benchmark GCCT [ 1CC [ Clang
ALPBench[9] 24 (72) 22 (66) 31 (129)
ASC-IInl[10] 22 (350) 21 (347) 22 (350)
Cortexsuite[11] 60 (1060) 57 (791) 62 (1042)
FreeBench[12] 38 (242) 31 (141) 39 (245)
Intel PRK[13] 36 (286) 23 (189) 34 (261)
Livermore[14] 53 (1443) 51 (1436) 57 (1612)
MediaBench[15] 152 (773) 120 (532) 183 (1279)
Netlib[16] 25 (207) 21 (195) 24 (204)
NPB[17] 196 (52259) 195 (52244) 198 (52350)
Polybench[18] 90 (3574) 91 (3589) 91 (3589)
SPEC 2000[19] 122 (1263) 125 (1272) 129 (1337)
SPEC 2006[19] 102 (421) 103 (425) 129 (907)
TSVCI[20] 149 (1955) 149 (1955) 149 (1943)
ML kernels[21] 27 (177) 27 (177) 21 (123)
Libraries[22], [23], 145 (1735) 139 (1569) 97 (1023)
[24], [25], [26]
Subtotal 1241 (65817) | 1175 (64928) [ 1266 (66392)
Shared 1061 (63902)

TABLE II: The numbers of loop nests and their mutations
included in the study

however, they generate code that outperforms ICC’s by 15%
in 174 and 114 cases respectively (this threshold was chosen
to mitigate experimental timing noise). In general, the results
indicate that there exist types of loops that each compiler can
handle better than the others.

B. General Mutation Performance

If we average the speedup of each loop’s best mutation over
its baseline, we see that, on average, source-level transfor-
mations speed up the loops by 1.11x, 1.05x, and 1.16x for
GCC, ICC, and Clang respectively, as shown in the second
row in Table III. Also, the standard deviations of speedup are
1.02~1.04, suggesting that the range of speedup is significant.

[ [[ GCC [ ICC [ Clang |
# of loops studied (L) 1241 1175 1266
1tg (og) of best mutation to base- || 1.11 1.05 1.16
line speedup (1.02) (1.04) (1.03)
# (%) in L that have beneficial 402 304 463
mutation(s) (324%) | (25.9%) | (36.6%)
# (%) in L that have all mutations 89 188 73
unfavorable (7.2%) (16.0%) | (5.8%)

TABLE III: Number of loops with mutation speedup above/-
below thresholds

Next, we assign categories to each of the mutations based
on their impact on performance. We consider mutations that
generate code 15% faster than the baseline to be beneficial and
those that generate code that is 15% slower than the baseline to
be unfavorable mutation, the rest are considered to be neutral.

As shown in the second row of Table III, the percentage of
loops with at least one beneficial mutation ranges from 25.9%
(ICC) to 36.6% (Clang). This suggests that Clang benefits
more from source-level transformations than ICC, with GCC
sitting somewhere between the two. On the other hand, as
shown in the last row of Table III, the percentage of loops
that only have unfavorable mutations is much higher for ICC
(at 16.0% vs. 5.8% (Clang) and 7.2% (GCC)), implying that
the performance of code generated by ICC is more easily

worsened by source-level transformations compared to Clang
and GCC.

Focusing on loops with beneficial mutations, we get the
distribution of speedups shown in Figure 1. The plots reveals
that for all three compilers, although most of the speedups
are below 2x, a significant number of loops receive over a
2x speedup. In fact, there are loops with speedups as high as
20x; however, we found that most speedups over 6x are due to
pathological scalar optimization after unrolling. For example,
after the mutator unrolls a loop from 7SVC by 8 times, Clang
decides to further fully unroll the loop and pre-calculates most
of the scalar operations at compile time, speeding up the
loop by 20x. Nevertheless, there is a case where interchange
facilitated better locality and vectorization to help a loop nest
gain 15x performance with Clang.

While ICC has fewer loops that are sped up by mutations,
the number of loops that have over a 3x speedup is comparable
to Clang’s and is much greater than GCC’s. Furthermore, both
ICC and Clang obtain 1.54x speedup if there is a beneficial
mutation for a loop whereas GCC can only attain a 1.46x
speedup. This suggests that GCC often has less dramatic
performance improvement compared to Clang and ICC.
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Fig. 1: Distribution of loops with beneficial mutation(s) and
their speedup

Next we consider loops where all mutations are unfavorable.
Figure 2 shows the distribution of loops at various slowdown
range. The average slowdown for these cases are 1.56x, 1.54x,
and 1.49x for ICC, GCC, and Clang respectively. It turns out
that most slowdowns are less than 2x but, for several loops,
slowdowns are greater than 4x and may be as large as 14x in
extreme cases. Considering that every loop has a mutation as
simple as unrolling by two, these results are surprising. After
examining the extreme cases, we learned that large slowdowns
are often tied to a sharp increase in instruction count, implying
that the compilers generate inefficient code when faced with
harmful mutations.

Table IV lists the statistics of the length of transformation
sequence that produces the best beneficial mutation for a loop.
For all three compilers, over 75% of the best mutations only
have one transformation, and because the effect of transforma-
tion sequence is usually the combination of the effects of the
individual transformations in the sequence, in later sections
we will mainly discuss single transformations.
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Transformation # (%) in the best beneficial mutations
sequence length GCC [ ICC | Clang

1 316 (78.6%) 228 (75.0%) 351 (75.8%)
2 62 (15.4%) 55 (18.1%) 101 (21.8%)
3 24 (6.0%) 21 (6.9%) 11 (2.4%)
4 0 (0.0%) 0 (0.0%) 0 (0.0%)

TABLE IV: Statistics of the length of transformation sequence
that produces the best beneficial mutation for a loop

C. Effects of Different Transformations

Table V contains the statistics of speedup gained by different
elementary transformations. The values are computed from
mutations that undergo only the respective transformation.
In each cell, the first two numbers are the geometric mean
and standard deviation of speedup, and the last one is the
percentage of affected mutations that are beneficial. In general,
all three compilers react to the same transformation similarly
with some exceptions. While GCC and Clang on average
receive a speedup from unrolling, ICC expects a slowdown.
Also, distribution is able to help ICC much more than for the
other two.

Transfor- pgloy of speedup/% being beneficial
mation GCC [ ICC [ Clang
Interchange 0.66/1.06/9.0% | 0.69/1.05/6.4% | 0.63/1.07/9.0%
Tiling 0.83/1.03/9.5% | 0.91/1.03/9.2% | 0.94/1.05/16.2%
Unrolling 1.06/1.03/25.8% | 0.97/1.04/18.0% | 1.09/1.05/29.6%
Unroll & jam 1.01/1.02/22.7% | 1.02/1.06/16.2% | 1.10/1.04/32.4%
Distribution 1.12/1.06/27.9% | 1.25/1.11/34.0% | 1.05/1.04/27.0%

TABLE V: Statistics of speedup from different elementary
transformations

While unrolling, unroll-and-jam, and distribution on average
increase performance, the two locality focusing transforma-
tions, interchange and tiling, are expected to slowdown the
loop. The intuitive reason is that most of the original loops
are already written with locality in mind, so altering locality
will likely lead to sub-par results. Nonetheless, 6.4%~9.0%
of the interchanged mutations and 9.2%~16.2% of the tiled
mutations manage to be beneficial.

D. Effects of Mutations on Different Benchmarks

Figure 3 shows the average speedup achieved by the best
mutations over their baseline grouped by benchmark-compiler
combinations.

Different compilers receive various effects even on the same
benchmark. In general, the best mutations can on average
speed up GCC and Clang for most of the benchmarks except
for ALPBench, Intel PRK, and the machine learning kernels,
where the average speedup is close to or slightly lower than
1x. On the other hand, there is usually less room to improve
the performance of loop nests for GCC across all benchmarks.
This is mainly because ICC is more aggressive in optimization
compared to the other compilers. It affects the results in
two ways, (I) heavy optimization may leave less room for
improvement, (II) ICC may sometimes revoke source-level
transformations. There are cases where it re-rolls or permutates
the loop back after we apply unrolling or interchange on a
loop.

OGCC NICC

)

Fig. 3: Average speedup that the best mutations achieve from
different benchmarks

The average speedup surpasses 1.15x for the following
benchmark-compiler combinations: GCC on netlib (1.35x),
TSVC (1.18x) and libraries (1.25x); ICC on ASC-lInl (1.15x)
and libraries (1.21x); Clang on livermore (1.15x), mediabench
(1.18x), NPB (1.17x), TSVC (1.22x), and libraries (1.21x).

E. Compiler Stability

We would expect a perfect compiler to be able to undo unfa-
vorable transformations and apply beneficial transformations
to any mutation of a loop. We would call such a compiler
stable, since it would produce the same performance for any
mutation of a given loop. We quantify the stability of a
compiler as a stability score, as given by,

1 L (J-(tgla)seline7 tl(jlztation[O]’ T ’tl(jlztation[n(l)])
L 2 HONEO) @

=1 N( baseline; > “mutation[0]? = * * mutation[n(l)])

(D

This is essentially the average stability of L loops. We compute
the stability of an individual loop as the normalized standard
deviation of the execution times of its » mutations and its
baseline. Standard deviation was chosen since it would be
close to O if a compiler produced stable performance for a
loop. The stability score has no absolute meaning by itself.
Instead, it can be used to compare the relative stability among
different compilers or to track the change in stability of a
compiler over its different versions.

We believe a compiler’s stability score reflects its ability
to recognize optimization opportunities. For example, a stable
compiler would interchange an unfavorably interchanged loop
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Fig. 4: Performance difference between each loop’s best-to-
worst mutations

for better memory access patterns and/or vectorization oppor-
tunities. The scores are 0.233, 0.201, and 0.183 for ICC, GCC,
and Clang respectively. By definition, a larger stability score
reflects greater instability; therefore, among the compilers we
tested, ICC is the most unstable and Clang is the most stable,
with GCC somewhere in between them.

To demonstrate the instability, we plot the performance
difference from each loop’s best mutation to its worst one in
log scale as shown in Figure 4. The performance differences
are taken from the 1,061 loops that are shared by all three
compilers and then sorted for each compiler separately; thus,
the data points at the same x location do not necessarily
represent the same loop. The plot clearly shows that ICC
typically has the highest performance difference while Clang
has the lowest.

Our results show that all three compilers have significant
best-to-worst performance difference for most of the loops,
and the difference can be as high as 29x. Therefore, the
compilers still have a long way to go before being stable.

F. Convergence Effect on Performance

In Section IV-A, we mentioned that the three compilers
sometimes have better baseline performance compared to the
others. Source-level transformations may help the compilers
that are falling behind catch up. To quantify this, we propose
a convergence score to measure how close the transformations
bring the performance of the compilers to one another, as given
by,

l l l
tgec: tiee: i)

l i o(tgees
1 1 1
L =1 M(té)co t§C)C’ t(Cl)ung)

2

Like the stability score, the convergence score is an average
of normalized standard deviations. This time, the standard
deviation measures how close the compilers’ performances
are. The convergence score is also meaningful only when
used in comparison. We computed the baseline convergence
score as 1.39 and as 0.96 when comparing the best mutations.
We believe that the smaller convergence score for the best
mutations shows that applying source-level transformations
mitigates deficiencies of compilers, tightening the performance
gap between them.

V. EFFECT OF TRANSFORMATIONS

In this section, we look at the results in more detail. We
investigate how each of the five transformations applied by
the mutator impact performance by computing the correlation
coefficient between performance change and each of a number
of hardware performance counter readouts. We also present
a few case studies illustrating the complexity of interaction
between the transformations applied by the mutator and the
compilers.

A. Computing correlation coefficients

We compute the correlation coefficient between (a) the
change in value of a performance metric and (b) the change in
execution time. Here “change” means the difference between
the original loop and the transformed loop. A performance
metric could be obtained by reading a hardware performance
counter or it could be computed using values from hardware
counters as is the case for cache miss rate. Specifically, the
correlation coefficient for a transformation 7" is computed as
follows: (I) For each loop nest [, we determine the fastest
mutation, m, resulting from applying the transformation. Re-
call that transformations can produce multiple mutations since
they are controlled by parameters (Table I). (II) Compute the
ratio of the execution time the original loop nest and the
execution time of the mutation m (1/S = t,, /toriginal)- This
is the inverse of the speedup of m over the original loop. (III)
Compute the ratio of the values for a performance metric P for
the original loops and the mutation m (R = Poriginai/Pm);
(IV) Calculate the Pearson correlation coefficient [27] between
the performance ratio 1/S and the metric ratio R, denoted
as pi/s,gr for all loop nests that can be transformed by 7'
The values obtained from the metric are inaccurate since
the change in their value during the reading process is also
included in the final readout. This inaccuracy is higher for
loops with short execution times. Hence, for this analysis, we
only include loops with baseline execution time higher than
10,000 cycles.

Note that p;,g r € [—1,1], where -1, 1, and O represent a
perfect negative correlation, a perfect positive correlation, and
no correlation, respectively. When the absolute value |p; /g g|
is high for a metric P, we may expect transformation 7' to
affect performance mainly in a way that relates to the factors
measured by P. If, on the other hand, |py,s r| is not large
for any of the performance metrics, the transformation may
impact performance for multiple reasons and thus its effect is
less clear.

To illustrate these ideas, consider Figure 5, which plots the
ratio of performance factor values R (y-axis) against speedup
S (x-axis) in logarithmic scale. For a perfect correlation
(p1/s,r € {—1,1}), all points on the plot are expected to
be on a R = kS,k # 0 line. Figure 5 (a) is a plot with
high negative p;,5 r value (-0.88), and the points resemble a
line R = kS with k& < 0. Figure 5 (b), on the other hand,
presents a mid-range positive correlation p;,5 r = 0.31. We
can still see a distinguishable R = kS with k£ > 0, but the
points are more scattered. Finally, Figure 5 (c) plots a S — R



relationship with a close to 0 py,5 g. In this case, the figure
does not manifest a visual correlation. In the rest of the section,
we consider |p; /g r| € [0.2,0.5) as moderate correlation, and
lp1/s,r| € [0.5,1] as high correlation.
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(@ p1ys,r = —088  (b) p1/s,g =0.31  (¢) p1ys,r = —0.01

Fig. 5: Example visualization of different p;,5 r range

The full list of performance metrics used in our study con-
tains 59 entries. For clarity, we only present the descriptions of
performance metrics that show interesting correlations in the
following sections in Table VI. In the table, derived metrics
are highlighted in italic font.

[ Metric
inst_retired.any

Description |

Counts the number of instructions retired
from execution.

Counts when new data lines are brought
into the L1 Data cache, which cause other
lines to be evicted from the cache.
Increments the number of outstanding L1D
misses every cycle.

Cycles with L1D load Misses outstanding.

11d.replacement

11d_pend_miss.pending

11d_pend_miss.pending

_cycles
mem_load_uops_retired Counts retired load uops in which data
11_miss_ps sources missed in the L1 cache.

12_demand_rqgsts.wb_hit
12_trans.12_wb
12_lines_in.all

Not rejected writebacks that hit L2 cache.
L2 writebacks that access L2 cache.
Counts the number of L2 cache lines
brought into the L2 cache.

All requests that missed L2.

12_rgsts.miss

performance metrics that reflect change in L1 performance
(11d.replacement, 11d_pend_miss.pending_cycles,
11d_pend_miss.pending), as well as in L2
performance (12_trans.12_wb, 12_lines_in.all),
12_demand_rgsts.wb. Besides, for ICC there is a
high negative correlation with L3 performance metric
$13_miss. For GCC, we also see moderate to high negative
correlations (-0.4~-0.7) with these cache related metrics.
Moreover, interchange also affects TLB performance with
-0.6~-0.7 negative correlations with TLB related metrics
(dtlb_load_misses.stlb_hit),
dtlb_load_misses.miss_causes_a_walk. The locality
improvements subsequently contribute to an increase in
instruction level parallelism suggested by moderate positive
correlations (0.2~0.5) with inst_rate.

In addition, the performance of both GCC and Clang
appears to be influenced by the change in dynamic instruc-
tion count (inst_retired.any) with [p;/g p| ranging from
0.4 ~ 0.6. This phenomenon implies that interchange can help
these two compilers accomplish the same amount of work with
fewer instructions. For ICC, we also found that performance
change is often accompanied by change in instruction count
in the opposite direction. By observing the instruction mix of
affected loops, we corroborated that vectorization contributes
to the reduction of instruction count.

for(k = 0; k < 25; k++) {
for(i = 0; 1 < 25; 1i++) {
for(j = 0; j < Inner_loops; Jj++) {
Px[J][1] += Vy[k]l[i] * Cx[J][k];
b}
/* interchanged */
for(j = 0; j < Inner_loops; Jj++) {
for(k = 0; k < 25; k++) {
for(i = 0; i < 25; i++) {
) Px[§][i] += Vy[k][i] * Cx[]][k];
}}

dtlb_load_misses
.miss_causes_a_walk
dtlb_load_misses.stlb_hit

Misses in all TLB levels that cause a page
walk of any page size.

Number of cache load STLB hits. No page
walk.

L1/L2/L3 hit/miss rate

%l1/12/13_hit/miss

inst_rate Instruction rate that measures instruction
level parallelism
[2_rw_rate L2 read/write rate calculate by dividing the

total number of L2 requests by the cycle
count

TABLE VI: Top performance metrics that correlate to execu-
tion time

B. Interchange

Loop interchange is useful when a nested loop initially has
a non-unit-stride memory access pattern. If interchanging the
loop nest can result in unit-stride access (or just reduce the
size of the stride), performance may be improved due to better
locality.

As expected, the correlation values obtained indicate
that interchange is correlated with cache performance
metrics for all three compilers. For ICC and Clang, we
found high negative correlations (p1,5,r < —0.9) with

Listing 1: Original and interchanged Livermore Loops code

Listing 1 is a case from the Livermore Loops that demon-
strates how interchange affects instruction count differently in
each of the three compilers. ICC gives the best performance for
the original loop nest; Clang’s output is 1.13x slower than ICC
and GCC has a 1.45x slowdown. Based on manual inspection,
we conclude that neither GCC nor Clang vectorize the loop
due to a non-unit stride access. However, Clang manages to
generate a more efficient address calculation than GCC, so
Clang’s scalar code executes 268K instructions while GCC
executes 384K instructions. On the other hand, ICC vectorizes
the loop using gather-scatter and its output executes 288K
instructions. Therefore, the non-unit stride and gather-scatter
overhead neutralizes great speedup from vectorization.

On the other hand, after the mutator interchanges the loop
nest as shown in Listing 1, the accesses to Px and vy become
unit-stride, and the locality when reading Cx also improves.
As a result, all three compilers vectorize the mutation with
reduced gather-scatter effort. ICC’s output now executes only
62K instruction, and is 2.8x faster than its baseline; GCC’s
numbers are 153K/2.4x, and Clang’s are 33K/4.7x. Hence,



apart from affecting locality, interchange can enable and/or
increase the effectiveness of vectorization. An additional note
is that after interchange, Clang’s mutation takes the lead and
becomes 1.46x faster than ICC’s output and 2.39x faster than
GCC’s. It is interesting to see a source-level transformation
changing the outcome for which compiler has the best perfor-
mance on a loop nest.

When scrutinizing the assembly, we noticed that the compil-
ers do apply loop interchange in some cases. This means that
the main reason for why these compilers fail to do interchnage
properly, must be an inaccurate profitability model.

C. Unrolling

Loop unrolling is a technique traditionally used for better
performance in exchange of bigger space. With the cost of
duplicating the loop body, unrolling may improve performance
by reducing control overhead (e.g. advancing the iterator and
testing exit conditions) and/or by enabling scalar optimizations
(e.g. common sub-expression elimination, constant folding,
etc). It may also allow the compiler to perform instruction
scheduling in a more flexible manner, thus increasing instruc-
tion level parallelism (ILP). Because of the trade-off between
space and performance, compilers may decide whether to
apply it after estimating potential benefit.

The correlation results demonstrate that unrolling in-
deed reduces instruction count. All three compilers show
moderate to high negative correlations (0.3 ~ 0.7) with
inst_retired.any. We also see moderate positive cor-
relations (0.3 ~ 0.4) with 12_rw_rate, suggesting that
although unrolling does not effectively reduce L1 miss rate, its
ability to reduce instruction count and increase ILP can still
increase performance by better utilizing L2 throughput when
the locality can be captured at the L2 level.

By further examining the assembly code, we first noticed
that the compilers do unroll some loops themselves. Some-
times they may even fully unroll a loop when the trip count is
relatively low, potentially exploding the code size. However, in
many cases when unrolling is beneficial, the compilers fail to
apply it. In particular, we found that unrolling is considerably
more effective towards loops whose bodies are small. The
reason is that such loops suffer more from control overhead.
Also, since the operation counts are low, unrolling does not
excessively inflate the code size. It is surprising that the
compilers decide not to unroll these loops, and just as with
interchange, the compilers need better profitability models for
unrolling.

Also, unrolling sometimes facilitates vectorization. Tradi-
tionally, vectorization is done by strip-mining the inner loop
by the vector length and then replacing the original loop body
with a vector equivalent. With this method, fully unrolled loops
cannot be vectorized and partially unrolled loops could lead to
inefficient vectorization. We found cases where unrolling dis-
abled vectorization. For example, ICC and Clang are both able
to vectorize a loop from SPEC 2006 by default, but unrolling
them twice causes the compilers to only produce scalar code,
which leads to 12x and 14x slowdown respectively. Previous

research suggests that compilers may even re-roll a source-
level unrolled loop in order to vectorize it [28]. However, the
more recent basic block vectorization technique incorporates
unrolling in its process. This method first unrolls the loop by a
factor and then tries to assemble isomorphic statements (which
contain the same operations in the same order) in the unrolled
loop body into vector instructions. Such vectorization is also
referred to as superword-level parallelism (SLP) [29].

for (i = 0; i < 32000; i++) {
X = a[32000 - 1 - 1] + b[i] = c[i];
afi]l] = x - 1.0;
b[i] = x;
}
/* unrolled 8 times */
for (i = 0; 1 < 32000; i += 8) {
x = a[32000-1i-1] + b[i] * c[i];
afi]l] = x - 1.0;
bli] = x;
/* iteration 277 are omitted */
x = a[32000-(i+7)-1] + b[i+7] * c[i+7];
ali+7] = x - 1.0;
bli+7] = x;
}

Listing 2: Original and unrolled 7SVC s281 code

A benefit of basic block vectorization over the traditional
method is that the former can partially vectorize a loop with
ease. Although we witnessed numerous cases where unrolling
helps the compiler to fully vectorize the loop, we present the
case of loop 5281 from TSVC, as shown in Listing 2, because
it exhibits the interesting trait of partial parallelization. This
loop is not well-optimized by any of the considered compilers.
After unrolling the loop 8 times, Clang first creates two
temporary vectors, denoted as tmp[0:7] and x[0:7]. The
former vector holds the intermediate results from 8 instances
of sub-expression b[i]*c[i] while the latter vector is an ex-
tension of scalar x. Then, tmp[0:7]=b[i:i+7]*c[i:1+7]
and b[i:1+7]1=x[0:7] are vectorized because they do not
have loop carried dependence. Since operations on a[] have
loop carried dependences, they remain scalar. By partially
vectorizing this loop, Clang gains a 1.7x speedup. The case
demonstrates that although the compilers have implemented
basic block vectorization, they may miss the opportunity until
the loops are manually unrolled.

Because unrolling can have diverse impact on vectorization,
it may be hard for programmers to predict its effect on
performance.

D. Unroll-and-jam

Unroll-and-jam is primarily employed to facilitate data reuse
via improving register usage, therefore decreasing the number
of memory access. Another notable utility of unroll-and-jam is
that it may enable vectorization on the outer loop without per-
forming interchange [30]. Although not as important, unroll-
and-jam can also reduce control overhead similar to unrolling’s
effect.

The correlation results for unroll-and-jam are rather in-
teresting. ICC has a high negative correlation (-0.9) with
11d.replacement and has a moderate positive correlation
(0.4) with $11_hit, which indicate that improvement in L1



hit rate is a major factor to the performance gain. GCC and
ICC, on the other hand, have lower negative correlations
(0.5 ~ 0.6) with 11d.replacement yet both also show
moderate correlations (0.5 ~ 0.6) with inst_retired.any.
The main difference between ICC and GCC/Clang is the
correlations with 12_rw_rate. For this metric, ICC exhibits
a high negative correlation (0.7) while GCC and Clang both
have moderate positive correlation (0.3). These values imply
that unroll-and-jam has a different effect on ICC compared to
GCC/Clang.

Figure 6 contains plots of speedup (x-axis) vs. change
in 12_rw_rate (y-axis) for all three compilers under the
influence of unroll-and-jam. From the figure, we see that
at low speedup/slowdown, all three compilers show positive
correlations with the metric. However, for high speedup cases,
ICC shows decrease in 12_rw_rate, represented by the points
on the lower right. Since the Pearson correlation is biased
towards data points with higher values, the overall correla-
tion becomes negative. In order to understand ICC’s diverse
correlation with 12_rw_rate at different speedup ranges, we
inspected other metrics of positive/negative correlation groups
separately. For the negative correlation group, we found that
11d.replacement is significantly reduced, which means that
the high speedup is achieved mainly from better data reuse
and thus fewer L1 eviction. For the positive correlation group,
we discovered that the relatively low speedup is due to other
factors such as lower control overhead.
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Fig. 6: Speedup vs. change in 12_rw_rate due to unroll-and-
jam

On the contrary, GCC and Clang have fewer points in the
lower right and more points showing positive correlation. More
notably, Clang is able to obtain high speedup with a positive
correlation with 12_rw_rate. By digging into other metrics,
we learned that a majority of the speedup corresponds to
the negative correlation with inst_retired.any, and the
source of the reduction in dynamic instruction count is largely
related to vectorization. For GCC, in the 42 cases where
unroll-and-jam is beneficial (> 1.15x speedup), 12 loops are
not vectorized initially, and 4 of them become vectorized
after unroll-and-jam. Also, we see a general increase in the

. . vector instruction count
vectorization rate (5572 TLeon 2280 From the 30 loops

that are already vectorized at the beginning, 21 loops receive
at least a 15% vectorization rate increase. For Clang, in
the 55 cases where unroll-and-jam is beneficial, 9 loops are
not vectorized initially, and 4 of them become vectorized
afterwards. Note that these 4 loops contain the top 2 speedup
that Clang attains through unroll-and-jam, achieving 4.1x and
3.6x respectively. Unroll-and-jam also help increasing the
vectorization rate for 8 loops.

We also surprisingly discovered that while unroll-and-jam
helps ICC’s performance, it seemingly reduces the effective-
ness of vectorization. In the 28 cases where unroll-and-jam
is beneficial, 4 loops are not vectorized initially, and none of
them gets vectorized after the transformation. Instead, there ex-
ist 5 loops whose baselines are vectorized yet the transformed
mutations become not; nonetheless, unroll-and-jam manages to
speedup these loops by 2.2x to 3.3x. Furthermore, unroll-and-
jam reduces the vectorization rate of 7 loops by at least 15%.
These results seem counter-intuitive at first, but after further
investigation, we found 2 major factors that contribute to the
anomaly. First, the benefit from vectorization is shadowed by
a worse memory access pattern. For the cases where scalar
mutations outperform vectorized baselines, we always see
sharp reduction in L1 miss rate after unroll-and-jam. Second,
the vectorized baseline may contain performance unfriendly
patterns, such as gather-scatter, and unroll-jam helps generate
more efficient vector code, even with a lower vectorization
rate.

for(i = 0; 1 < n; 1i++) {
for(j = 0; J < n; J++) |
x[1] = x[1i] + beta * A[J][i] » y[3];
}
}
/# unroll-and-jammed 4 timesx*/
for(i = 0; i < n - fringe; i += 4) {
for(j = 0; J < nj j++) {
x[1] = x[1] + beta = A[J][i] = y[J];
x[1i+1] = x[i+1l] + beta * A[J][i+1] % yI[3];
x[i+2] = x[i+2] + beta * A[J][i+2] * vI[3];
x[143] = x[143] + beta » A[J][1+3] * y[]];
}
/* residue loop is omitted x/
}

Listing 3: Original and unroll-and-jammed Polybench linear-
algebra-blas-gemver code

Listing 3 contains a loop nest from Polybench’s workload
linear-algebra-blas-gemver that illustrates how unroll-and-jam
helps ICC’s vectorizer with a deceiving reduction in vector-
ization rate. ICC manages to vectorize the original loop nest,
yet in an inefficient means. It first unrolls the inner loop by
32 times. It then transforms the unrolled iterations into 8
vector operation sessions. In each session, 4 elements of A
are gathered from far apart addresses to assemble a vector,
and another vector of 4 y elements are directly loaded from
consecutive y. Then, the two vectors together with a third
vector of copies of beta are multiplied together. The result
vectors from all 8 session are later added together and reduced
to a single value that is stored to x[i] afterwards. This
vectorization is very inefficient in terms of both gather-scatter
overhead and locality.



Fortunately, unroll-and-jam provides a better vectorization
approach. ICC is able to vectorize the inner loop body with the
basic block vectorization technique after the transformation. It
first broadcasts y [ j] to a 256-bit vector register. Then, it loads
another vector register with A[j][i:1+3] from consecutive
addresses. Afterwards, it multiplies the two vectors with a
vector of beta. Each iteration the result of the multiplication
is accumulated onto that from the previous iteration, and after
the inner loop exits, the results are written to x[i:1+3]
with a vector store instruction. Clearly, the new approach
is superior since it completely eliminates gather-scatter and
has improved locality. In the end, the mutation is 3.7x faster
than the baseline. However, the mutation contains 46% vector
instructions, whereas the baseline contains 64%, so in this case
the vectorization rate is misleading.

E. Tiling

Tiling is applied to a loop nest primarily when the workset
is reused multiple times but is too large to fit in cache. By
tiling the loop nest with appropriate block size, blocks of the
original workset can be reused without re-fetching from the
lower memory, therefore improving performance.

The correlation results do confirm that tiling mainly affects
locality. All three compilers exhibit different amount of cor-
relations (0.3 ~ 0.6) with metrics related to various cache
levels,
%11_hit, 11d_pend_miss.pending, 11d.replacement),
L2 (12_rgsts.miss, 12_lines_in.all), L3 (%13_hit),
and TLB
(dtlb_load_misses.stlb_hit).

The hardware counter values also suggest that tiling often
increases dynamic instruction count, which mainly results
from additional address calculations and iterator operations
introduced by the added loop nest level. Therefore, when the
access patterns are not benefit from tiling, or the benefit does
not cover all the overhead, tiling can cause slowdown.

such as L1 (11d_pend_miss.pending_cycles,

FE. Distribution

Loop distribution helps performance mainly by separating
data streams, which may improve locality and/or prefetching
behavior. The correlation results confirm its utility. All three
compilers have high positive correlations (0.7 ~ 0.9) with
12_rw_rate, indicating distribution may better utilize L2
throughput, likely because of better prefetching behavior. We
also see moderate positive correlations (0.3 ~ 0.5) with
inst_rate, which implies that higher L2 access throughput
also helps increasing the overall instruction throughput.

VI. VECTORIZATION

In Section V, we already discussed that vectorization plays
a major role in the performance gain. If a loop is not originally
vectorizable but, after undergoing a transformation sequence,
becomes vectorized, it may receive a sizable performance
boost. We also noticed that there are scenarios where scalar
code outperforms vector code due to the overhead introduced
during the vectorization process and/or locality difference.

Therefore, we took one step further to investigate how different
vectorization settings may influence the performance of loops.

We compiled and profiled all the loop nests and their
mutations with 4 additional vectorization settings. We refer to
the compiler settings described in Section III as the reference
settings, and the 4 additional settings are the reference settings
with added switches. The settings are: only generating scalar
code, using only SSE, using SSE and AVX, and using up
to AVX2. Moreover, for the three vector configurations, we
disabled the compilers’ vectorization profitability analysis if
possible so that the compilers vectorize the loop with the
corresponding vector extension whenever possible, regardless
of the predicted profitability. Note that Clang does not provide
switches to turn off the profitability analysis.

Because vectorization does not always guarantee speedup,
instead of looking at compilers’ vectorization report to deter-
mine whether a loop is vectorized, we define that a loop has
effective vectorization if the vector code is at least 15% faster
than the scalar code; specifically, we claim the vectorization is
effective if t;eqiqr/ min(tsse, tavy, tavxz) > 1.15 where ¢ is the
execution time of setting s. Since the compiler flags for SSE,
AVX, and AVX2 are identical to those for scalar, except for
enabling various vector extensions, the performance difference
is expected to be mainly from vectorization. Furthermore, a
mutation’s scalar performance may be significantly lower than
that of the baseline. If so, the mutation might not be beneficial
overall even if it has effective vectorization. Therefore, for
this study, we are only interested in mutations that are both
beneficial to the baseline while being vectorized effectively.

A. Effect of Mutations on Vectorization

Let’s first investigate how mutations affect vectorization.
The first row of Table VII lists the total number of loops that
we studied for each compiler, denoted as L. The second row
has the number and percentage of loops in L whose baseline
are not effectively vectorized, denoted as N. It shows that
ICC’s vectorizer is the most effective among the three because
it fails to vectorize the least percentage of L (59.6%). On
the contrary, Clang’s vectorizer is the least effective in the
sense that it only manages to vectorize 21.1% of L effectively.
The next row presents the number and percentage of loops
in N that have beneficial mutations, denoted as B. Note
that the percentages in this row (39.6%~47.5%) are much
higher than the percentages of loops with beneficial mutation
in L, which are 25.9%~36.6% (second row in Table III).
This phenomenon indicates that loops that are not originally
vectorized have higher chance to receive speedup from source-
level transformations. Finally, the last row contains the number
and percentage of loops in B whose beneficial mutations are
effectively vectorized. It demonstrates that 36.1%~38.1% of
the beneficial mutations are vectorized effectively while their
baselines are not; thus, source-level transformations are able
to increase performance by boosting compilers’ vectorizers’
success rate.



[ [[ GCC [ ICC [ Clang |

# of loops studied (L) 1241 1175 1266

# (%) in L without effective vec- 866 700 999
torized baseline (V) (69.8%) (59.6%) | (78.9%)

# (%) in N that has beneficial 373 277 475
mutation (B) (43.1%) (39.6%) | (47.5%)

# (%) in B whose beneficial mu- 141 100 181

tation is effectively vectorized (37.8%) (36.1%) (38.1%)

TABLE VII: Statistics of effective vectorization
B. Vectorization Settings

We compiled each mutation with various vectorization
settings to assess compilers’ effectiveness in (I) deciding
whether to vectorize a vectorizable loop and (II) choosing
the best vector extension for the task. Table VIII contains
the number of loops (from the totals in the first row in
Table VII) that are improved by at least 15% via changing
vectorization settings. The first row focuses on the benefit by
bypassing the profitability model. 8.1%~9.4% of the loops
can be sped up by over 15% with this method. The second
row counts the loops whose performances rise by using an
older vector extension. This time, 10.0%~12.1% additional
loops receive benefit. With the combination of the two efforts,
18.1%~21.5% of the loops can receive a sizable performance
boost without undergoing any transformations, as listed in the
last row. We noticed that the numbers in the table from Clang
are lower than the other two compilers’, we believe the fact
that Clang does not allow turning off profitability analysis
explicitly contributes to this result.

[ [ GCC T ICC [ Clang |
# (%) in L improved by bypassing 117 107 102
profitability model only (9.4%) (9.1%) (8.1%)

# (%) in L improved by selecting 150 138 127
older vector extensions only (12.1%) | (11.7%) | (10.0%)
# (%) in L improved by combining 267 245 229
the two settings above 21.5%) | (20.9%) | (18.1%)

TABLE VIII: Statistics of loops having speedup by changing
vectorization settings

Figure 7 plots the speedup distribution of loops that are
sped up by only changing the vectorization setting during
compilation. While most speedups are below 2x, a number of
loops gain speedups of 3x or above. Hence, a more accurate
vectorization profitability model and a better understanding on
the characteristics of different vector extensions can potentially
help compilers to generate much faster results.

1000

OGCC NICC EClang

=
o
]

®

# of Loops

=
S)

°° CR)
N\ N A N
| i

2x~2.5x 2.5x™3x
Speedup Range

1.15x~1.5x

1.5x™2x

3x~3.5x 3.5x™4x Sax

Fig. 7: Distribution of loops that are improved by changing
vectorization settings when compiling the original loop

By combining the efforts of applying sequences of source-
to-source transformations and searching for the best vector-
ization setting, we are able to accelerate 579 (46.7%), 420
(35.7%), and 589 (46.5%) loops for GCC, ICC, and Clang
respectively, and the average speedup of these beneficial cases
is 1.61x~1.65x depending on the compiler.

C. Vectorization Profitability Case Study

In order to gain insight into the complex factors that
affect the profitability of vectorization, we study the case in
Listing 4, which is taken from NPB LU benchmark and whose
scalar version outperforms its vectorized counterparts. The
codelet’s vectorized reference compilation is 2.2x slower than
the scalar version where auto-vectorization is disabled on ICC.
To understand the cause, we investigated the assembly code of
both the reference and the scalar version. We discovered that
the anomaly may be attributed to the following two reasons.

double ce[5][13], rsd[64]([65][65][5];
for(i = 0; i < nx; i++) {
iglob = i;
xi = iglob /(nx0 - 1);
for(j = 0; J < ny; J++) |
jglob = J;
eta = jglob /(ny0 - 1);
for(k = 0; k < nz; k++) {
zeta = k /(nz - 1);
for(m = 0; m < 5; m++) {
rsd[i] [j][k][m] = ce[m][0] + ce[m][1l] = xi
+ ce[m] [2] * eta + ce[m][3] x zeta + ce
[m] [4] * xi2 + ce[m][5] * eta2 + celm
1[6] = zeta2 + ce[m] [7] * xi3 + ce[m
][8] x eta3 + ce[m][9] % zeta3 + ce[m
][10] = xid4 + ce[m][11l] * etad + ce[m
1[12] * zetad;
P}

Listing 4: NPB LU code

First, the reference code is vectorized at a length of 2.
Instead of packing consecutive elements in the array ce to
a SIMD register, the compiler unrolls the loop by a factor of
2 before vectorizing and then picks two adjacent elements in
a column, e.g. ce[0][0] and ce[1][0]. Since one vector
instruction can process operations from multiple iterations
in the source code, we expected the number of assembly
iterations in this vector code to be much less than that in the
scalar one. However, we were astonished to see that the length
of the scalar code is instead half of that of the vectorized code.
By scrutinizing the assembly, we learned that the compiler
fully unrolls the scalar code’s innermost loop. It turns into
fewer iterations and improves performance by eliminating
the end-of-loop test. Meanwhile, the compiler aggressively
schedules instructions for the scalar code after unrolling as
there is no data dependence. This might be able to enhance
instruction pipelines with the help of better ILP.

Second, this codelet tends to have many write cache misses
since the rsd array does not fit into L1 and even L2 cache.
Vector code is usually supposed to stress memory more than
scalar code since it is more likely to complete computations
faster. But it turns out that scalar code surprisingly manages
to keep the memory much busier in this case. For example,



we found that the scalar code is able to fetch two cache lines
concurrently for rsd over 14% of the execution while the
vector code is essentially fetching one cache line at a time.
Moreover, the scalar code keeps fetching at least one cache
line over 70% of the execution while the vector code keeps the
memory busy for only 31% of the execution. Since the most
expensive factor is write cache misses, and the scalar version
manages to process that more aggressively, it runs faster than
the vector code. We observe that the vector code has more
L1 hitting loads from ce in between write missing stores to
rsd. These loads fill up the load buffer, cause the processor
to stalls and prevent the processor from executing the stores
more aggressively.

Consequently, compilers may not be able to accurately
predict the outcome of vectorization due to complex factors
interfering with each other.

VII. RELATED WORK

The work that is most related to this study is the work of
Maleki et al [28] who studied the effectiveness of vectorization
in compilers as well as how transformations aid vectorization.
Their study demonstrated, for vectorization, some of the
instability effects discussed in our paper although they applied
transformations by hand. There have been numerous studies on
the selection of the transformations and the complexity of the
space of performance obtained. Particularly influential is the
work of Knijnenburg and O’Boyle [31], [32]. However, their
work is more about the design of novel compiler algorithms
than on how to evaluate compilers. Also related is the work on
the selection of compiler options mentioned in the introduction
[1], [2]. Aimed at accelerating performance evaluation of pro-
grams, a few prior works also proposed to extract the hotspots
from applications [33], [34] and save them as stand-alone
codelets. Castro et al [33] isolated code at the Intermediate
Representation (IR) level using LLVM framework. In contrast,
our extractor is implemented as a separate component of the
ROSE compiler to isolate loop nests at the source level. Liao et
al [34] also employed ROSE to develop their extractor. While
they mainly focused on outlining the kernels of the target
application at the function level for automatic kernel tuning
and specialization, our extractor concentrates on isolating for
loops. In addition, the goal of our extractor is to provide stand-
alone codelets for loop transformation.

VIII. CONCLUSION

This paper aimed to investigate (I) potential room for
improving the loop optimization passes of state-of-the-art
compilers, (II) the stability of the compilers when dealing
with semantically equivalent versions of a loop nest, (III) how
source-level loop transformations affect the effectiveness of
optimizations applied by today’s compilers, (IV) the accuracy
of compilers’ vectorization profitability models.

We accomplished the goals by profiling an extensive col-
lection of C for loop nests extracted from various sources,
including benchmarks, libraries, etc., along with numerous

mutations derived from them via semantic-preserving trans-
formations applied by a mutator. From the profiling results,
we analyzed the major effects of the transformations on
performance by correlating the speedup with the change in
performance metrics. Using the correlation and by manually
inspecting the assembly code of interesting cases, we found
that as the number and complexity of the optimization passes
in modern compilers increase, the effect of source-level trans-
formations becomes quite difficult to predict.

For example, a transformation may impact the same perfor-
mance metric in opposite directions. One instance is unrolling,
which may either help or hinder vectorization depending on
the vectorization technique a compiler applies. To make the
matter worse, when a compiler implements both loop and
SLP vectorization (and potentially only applies one of them
to a loop), the effect of unrolling on vectorization becomes
unpredictable. Therefore, it is now harder for programmers
(and source-level optimizer such as polyhedral compilers)
to control the behavior of their code by altering the loop
structure. Moreover, because different compilers may react to
the same transformation in different ways, it is even harder for
a programmer to write a loop structure that can be optimized
well by multiple compilers.

During experiments, we noticed that, when the vectorization
profitability model fails, the performance of a loop can be
severely influenced. Also, the newest vector extension, al-
though having longer vector length and more features than the
older ones, can be outperformed by the older ones. Our results
showed that by empirically choosing whether to vectorize
a loop and/or the best vector extension for the said loop,
18.1%~21.5% of the loop nests can be sped up by at least
15% without modifying the source code.

We then quantified compiler stability by introducing a
stability score and learned that the evaluated compilers are
far from being stable. We also investigated if source-level
transformations are able to narrow the performance gap among
compilers and quantitatively confirmed it by devising a con-
vergence score.

Finally, with the combined effort of applying source-level
transformations and tuning vectorization settings, 35.7~46.5%
of the loops are improved by over 15%, and a loop nest can
expect a 1.61x~1.65x speedup on average if we manage to
find a beneficial mutation and/or better vectorization setting
for it. Because the results are only the lower bound of
potential performance improvement, they prove that there is
a significant performance headroom for each of the three
compilers evaluated.
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