
To Stream or Not to Stream — That is Not the
Question

Artjoms Šinkarovs and Sven-Bodo Scholz

Heriot-Watt University, Edinburgh, Scotland
a.sinkarovs@hw.ac.uk, s.scholz@hw.ac.uk

Abstract. This paper proposes a unification of stream programming
and array programming. It introduces an array calculus that supports
infinite ranges for multi-dimensional arrays. We show that such a setting
is not only suitable to elegantly specify array programs as well as stream-
ing applications, we also demonstrate that such a unified core language
opens up completely novel opportunities. Programs can be written in a
generic fashion allowing for finite as well as for infinite applications of the
same algorithm; several algebraic properties of array operations on finite
arrays can be carried over into the infinite case; arrays can be defined in
a recursive fashion without requiring the programmer to statically iden-
tify dependencies between array elements; and such arrays can be seen
as a memoisation mechanism for discrete functions.

We provide a definition of such an array language, sketch its capability
to shallowly embed classical streaming languages, show a few universal
equalities of the language, and we present many examples showcasing
the various benefits of the array-only setting. Finally, we provide a brief
discussion of a prototypical implementation of the language.

1 Introduction

In high performance computing, the term streaming application has at least
two connotations. First, the term refers to applications that need to process
data arriving as a sequence of items, e.g. a stream of observations or a stream
of frames captured by a video camera. Secondly, the term streaming refers to
applications that operate on finite data sets but choose to split those sets into
a sequence of subsets. This can be done for efficient processing through FPGA
or GPU compute devices, or for minimising the amount of data that has to be
stored in RAM at any given time.

Despite the fundamental similarities between these two application types,
their specifications, i.e. the source codes, differ significantly. The first type of
applications explicitly operates on frames of data, and progression from one
frame to the next is explicit. The second type has no notion of the temporal
element at all. Instead, their source codes simply iterate over array assignments.
Rather than being explicit, the notion of streaming in these cases typically is
introduced by elaborate compiler technology e.g. polyhedral code generators.

This paper proposes to unify these two forms of streaming on the specifi-
cational level, i.e. at the level of the programming language, entirely shifting
decisions on whether or how to stream any of these applications into the realm
of a compiler.

The potential advantages of such a unification are manifold. Algorithms that
are written with finite structures in mind can be applied to potentially infinite
streams without any modifications and vice versa. Compiler technology devel-
oped for one context directly helps the other context; in particular when con-
sidering advanced code generation for parallel executions this is a huge benefit.
Having a unified framework for streaming applications and loop nests over array
assignments also enriches potential reasoning about programs as properties can
possibly be carried over from one framework to the other.

The key insight of the proposed unification lies in the interpretation of
streams as transfinite arrays. Based on a formal semantics, we introduce the
unifying framework, its initial implementation and we demonstrate how pro-
grams can be written in a stream-agnostic style, liberating programmers from
the necessity to answer the question “to stream or not to stream”. We discuss
performance related aspects when trying to compile such programmes into highly
efficient parallel codes. In particular, we show how several existing techniques
can be applied without any or with minor extensions only. Finally, we identify
further research directions by sketching solutions for some of the challenges that
arise when integrating the proposed framework into existing compilers.

2 Streaming Finite Arrays

Before diving into the world of infinite objects, let us work out the finite case first.
The core of this work is based on the observation that array-based languages
capture enough information to turn regular programs into streaming programs.

Array-based languages make it natural to express operations on entire ar-
rays rather than on individual scalars. As examples of such languages you may
consider Matlab, APL, Julia or R. It turns out that this idea of array pro-
gramming can be embedded nicely into the setting of functional programming
languages. Examples for such an embedding are SaC [18], DpH [6], Accelerate [7],
Futhark [11], or Feldspar [1]. These languages combine high-level abstractions
with powerful opportunities for program optimisations and code generation.
Most importantly, they all support generation of high-performance codes for
parallel architectures.

The core of functional array languages is typically built around a small set
of array generating skeletons. Usually these are variants of map, reduce or scan
combinators that relate generators of index sets to computations of correspond-
ing array elements. We refer to these generically with the term array compre-
hensions.

For our discussion, the choice of a particular language is irrelevant. In order
to keep the discussion language independent, we use an abstract minimalistic
language called Heh. It is an applied λ-calculus extended by an array compre-

hension construct called imap (index mapping). At this stage, the reader can
assume his favourite array programming language instead, as Heh can be easily
mapped into languages such as SaC, Futhark or Julia. We explain the basics of
Heh as we need them in our examples. More details on Heh can be found in []
as well as in Section 4.

As a motivating example, consider a simple convolution kernel. We look at
a classical 1-dimensional three point stencil code over an input array a. In Heh,
this code can be specified as

letrec s t e n c i l = λa .
letrec n = | a | . [0] in
imap [n] { [0] <= iv < [1] : a . iv ,

[1] <= iv < [n−1] : (a . [i v . [0] −1]
+ a . i v + a . [i v . [0] + 1]) / 3 ,

[n−1] <= iv < [n] : a . i v

We define a function stencil that takes one argument called a. It first com-
putes the length n of the 1-dimensional array a and then uses the imap operator
to define the result of the convolution. The first parameter of imap specifies the
overall shape of the result to be a vector of length n. The shape-expression is
followed by the symbol { after which a definition of how the elements at any
index position iv are to be computed follows. For convenience, we allow the
element computations to be defined piecewise for one or more index ranges. The
programmer can specify pairs of index range and element-computations which
we refer to as partititions. In our example, we distinguish three different index
ranges: The first and the last partition describe static boundaries — the value
there is computed as selections into a at the corresponding positions. The sec-
ond partition describes that for a given index iv, we evaluate selections into a

at index positions iv, iv-1 and iv+1, we add those values and divide them by
three.

Using vertical bars around an expression computes the given expression’s
shape and the infix dot operator denotes element selection. One aspect to notice
here is that in Heh the indices for selection need to be vectors rather than scalar
values. Another aspect to notice is that the above specification of the imap
operator never specifies dependencies between the elements of the resulting array.
As the name of the operator suggests, it is an index mapping. This means that
at runtime, the above index space can be evaluated in parallel or in arbitrary
order.

Advanced compiler technology is capable to either produce parallel code
which computes a result array in freshly allocated memory or to produce se-
quential code which performs the computation in place, i.e. the result is stored
in the same memory as the input array. The latter roughly leads to C code of
the form:

double ∗ s t e n c i l (double ∗ a , s i z e t n) {
double t0 = a [0] , t1 = a [1] , t2 = a [2] ;
for (s i z e t i = 1 ; i < n−1; i++)
{

a [i] = (t0 + t1 + t2) / 3 ;
t0 = t1 ;
t1 = t2 ;

t2 = a [i +2] ;
}

return a ;
}

The function stencil gets two arguments, a 1-dimensional array a and its length
n. It traverses the array left-to-right, leaving out the first and the last elements.
At every iteration, the variables t0, t1 and t2 are being updated and the actual
stencil operation is being computed for the given index.

Effectively, t0, t1 and t2 implement a circular buffer where at every iteration
a new element is being pushed into it and one elements is being pushed out.
Secondly, the array a can be seen as a stream that unfolds one element at a
time. If we would output our result into a different array, after a[i] has been
computed, it can immediately be discarded. Finally, this code is invariant to the
length of the array a, it is perfectly suitable to operate on an infinite array a.

A key to this optimisation is the observation that under the given traversal
of the index space, a buffer of three elements is sufficient to implement up-
date in-place. Whenever the scope of array accesses can be determined such a
transformation into a streaming code can be automated by the compiler. The
needed information can either be inferred by static analysis or provided through
some program annotation or a combination of both. Many approaches to this
are possible: we can blindly believe programmer annotations or we can reject
a program in case the annotations cannot be verified statically or dynamically.
Irrespectively of these choices, we can see that it is possible to obtain stream-
ing implementations from array program specifications making highly efficient
streaming solutions from array specifications plausible.

Such a unification of specifications offers a number of immediate benefits.
First, if we express streaming as array operations and the input data turns
out to be finite, we immediately benefit from the full power of the compiler
technology of existing array languages.

Secondly, such a unification implies that streaming-specific optimisations will
find their way into the context of array compiler technology as well. This will
not only benefit classical streaming problems but also streaming solutions in
classical finite array problems as well.

Finally, we can write programs that are polymorphic over finite arrays and
streams i.e. programs that are applicable to finite and infinite objects alike. We
can use this representation to construct a proof that a given program can operate
on infinite data in constant space.

3 Streaming Applications as Programs on Arrays

Before fleshing out more details about a unified calculus for arrays and streams
we first want to look at typical streaming codes and investigate if and how these
can be re-formulated in an array-based language. Many streaming languages
have been proposed over time. They all differ in various details but have the
overall setup in common. They typically have some basic building blocks which

compute streams of output values from streams of input values. In the context
of this paper, we look at the streaming language Streamit [19] as a point point
of reference.

In Streamit, the basic building blocks are named filters. A filter is either a
stateless or stateful computation that maps input values to output values. More
complex filters can be composed of the basic filters by using three combina-
tors that are hard-wired into the definition of Streamit: Pipeline, SplitJoin, and
FeedbackLoop. The Pipeline combinator combines two filters into a single one by
feeding the output of the first filter into the input of the second filter. SplitJoin
cuts a stream into n sub-streams, applies each sub-stream to one of n filters and
rejoines the outputs into a single stream again. FeedbackLoop allows the output
of one filter to be partially fed back to its input. The data that is fed back is
merged into the input stream of the FeedbackLoop itself.

While all these constructs may seem radically different from those found in
non-streaming programs, when looking at individual applications, a re-formulation
in an array style turns out surprisingly natural. Let us consider the construction
of Streamit-like filters first. Let us look at the FIR example from the paper [] on
Streamit:

class FIRFi l te r extends F i l t e r {
f loat [] we ights ;
int N;
void i n i t (f loat [] we ights) {

s e t Input (Float .TYPE) ;
setOutput (Float .TYPE) ;
setPush (1) ; setPop (1) ; setPeek (N) ;
this . we ights = weights ;
this .N = weights . l ength ;

}
void work () {

f loat sum = 0 ;
for (int i =0; i<N; i++)

sum += input . peek (i)∗ weights [i] ;
input . pop () ;
output . push (sum) ;

}

The FIRfilter contains two initialisation variables weights and N. weights
is supposed to hold a vector of N weights of floating point type. The body of the
filter definition contains two methods: init for initialising the filter and work

for doing the actual computation.
The init method initialises the two variables and it determines how this

filter interacts with the input and output streams. In particular, it defines that
each invocation of the filter will consume one element from the input stream,
and produce one element to the output stream: setPop (1) and setPush (1),
respectively. It also defines that the filter will need a preview on the subsequent
N elements: setPeek (N).

The actual operation of the filter is defined in the method work. It peeks into
the next N elements of the input stream and computes the dot product of these
values with the vector weights. Subsequently, it consumes the first input of the
stream and it pushes the computed result into the output stream.

FIRfilter can be expressed in Heh directly as1:

letrec F IR f i l t e r = λ input .λweights .
letrec n = | weights | . [0] in
letrec l = | input | . [0] in
imap [l − n + 1]

{ (i v) : dotp (takeat iv n input) weights

We compute an output stream from input stream and an array of weights. The
length of the output is N − 1 elements shorter than the input. The functions
dotp and takeat are defined as follows:

letrec dotp = λa .λb .
reduce plus 0 (imap | a | { (i v) : a . i v ∗ b . i v)

letrec takeat = λ idx .λ l en .λa .
imap [l en] { (i v) : a . (p lus idx iv)

dotp computes the dot product of two vectors. The function takeat takes a
sub-segment of an array a. It expects 3 arguments: an offset idx where to select
from, a number of elements len to select, and the vector a to select from. With
these definitions, FIRfilter implements the FIR filter for arrays of any size.

Let us now demonstrate how we can arrive at the same code by providing
Streamit abstractions in Heh. For simplicity of presentation let us first assume
that the filter reads one input element and produces one output element at a
time. The number of elements filter can peek may vary.

We define a higher-order function si filter to separate the handling of
input and output streams from the filter-specific work:

letrec s i f i l t e r = λwork .λpeek .λ input .
letrec sh = [| input | . [0] − peek + 1] in
imap sh { (i v) : work (takeat iv peek input)

The function si filter takes three arguments: the work function, the number
of elements in the input stream a filter will peek into, and the input stream. All
this function does is to invoke the work function for each element of the result
stream, providing it with the corresponding section of the input stream.

With this definition, we can define now the FIR filter as

letrec work = (dotp weights) in
letrec peek = | weights | . [0] in
s i f i l t e r work peek

We define the work function through a partial application of the dotp function
and we compute the peek size from the length of the weights. The full filter
then can be defined as a partial application of si filter to the work function
and the peek length.

Push and Pop of larger sizes When filters consume and produce more than one
element, we can model this by generating two-dimensional streams which we
subsequently flatten. For example, consider a filter function that produce two
elements at a time. In this case the definition of si filter can be adjusted such
that we first create a stream of pairs and then flatten it:

1 A complete program is available at https://github.com/ashinkarov/heh/blob/master/examples/fir.heh.

letrec work = λ i . [1 , 2] in

letrec s i f i l e r = λwork .λpeek .λ input .
. . .
l e r t r e c out2d = imap sh | [2] { (i v) : work . . . in
f l a t t e n out2d

When worker function consumes multiple elements from the output stream,
we have to adjust the computation of the length of the output. For example,
if a function consumes m elements at a time, the length of the output can be
computed as:

. . .
letrec sh = [(| input | . [0] − peek + 1 + (m−1)) / m] in
imap sh { (i v) : work (takeat [i v . [0] ∗ m] peek input)

Both of these cases can be combined, and both parameters can be passed via
the arguments of si filter:

letrec s i f i l t e r = λwork .λpeek .λpush .λpop .λ input .
letrec sh = [(| input | . [0] − peek + 1 + (pop−1)) / pop] in
l e r t r e c out2d = imap sh | [push] { (i v) : work (takeat [i v . [0] ∗ pop]

peek input)
in f l a t t e n out2d

Remaining Streamit combinators In a similar fashion, the streaming combina-
tors of Streamit can be defined in Heh. Pipeline boils down to simple function
composition:

letrec s i p i p e l i n e = λ f .λg .λ input . g (f input)

The SplitJoin combinator splits the input stream into n sub-streams and
re-joins the result streams into a single stream of results. Again, the scaffolding
can be expressed through a higher-order function responsible for re-shuffling the
stream data as needed. Round robin splitting and joining of n sub-streams can
be expressed as

letrec s i s p l i t j o i n = λ f s .λ input .
letrec n = | f s | in
letrec m = [| input | . [0] / n] in
letrec out2d = imap n |m { (i v) :

f s . i v (take each f rom n iv input)
in f l a t t e n (t ranspose out2d)

si split join takes two arguments, the first argument fs is a vector of
n filter functions and the second argument is the input list. In the body, we
apply each filter function in fs to a sub-stream of the input stream. We com-
pute these sub-streams using a function take each from which takes each nth
element of the argument stream starting at offset iv. In the same way as in
the implementation of the function si filter with non-unit output, we specify
a two-dimensional stream where each its row represents the result of applying
the ivth filter function in fs to the corresponding sub-stream. A round-robin
merge can be achieved by flattening the transposed two dimensional array of
result-streams.

The FeedbackLoop combinator makes it possible to create cycles in a stream.
This can be achieved in Heh by creating recursive imaps. In [] the motivating
example for the FeedbackLoop combinator was a stream of fibonacci numbers,
which can be expressed in Heh as:

letrec f i b = imap [N] { [0] <= iv < [2] : 1 ,
[2] <= iv < [N] : f i b . [i v . [0] −1]

+ f i b . [i v . [0] −2]

While the definitions presented here merely sketch how a streaming language
such as Streamit can be shallowly embedded into an array language such as Heh,
we can observe several aspects that are instrumental for a rather straight-forward
embedding:

Firstly, support for multi-dimensional infinite arrays turns out to be useful for
dealing with sub-streams. Secondly, support for higher-order functions is crucial
to define the compositional primitives of the streaming language. Finally, the
ability to specify arrays in a recursive fashion is instrumental for supporting
feedback mechanisms. All three of these aspects are reflected in the definition of
our array language Heh.

4 Extending Arrays to Infinity

We present Heh in two steps. First, we define a finite strict fragment called
λα, and then we extend λα with the ability to handle infinite arrays. λα is an
idealised, data-parallel array language, based on an applied λ-calculus. The key
aspect of λα is built-in support for shape- and rank-polymorphic array opera-
tions, similar to what is available in APL [12], J [14], or SaC [10].

In the array programming community, it is well-known [13, 8] that basic de-
sign choices made in a language have an impact on the array algebras to which
the language adheres. While we believe that our proposed approach is applicable
within various array algebras, we chose one concrete setting for the context of
this paper. We follow the design decisions of the functional array language SaC.

DD 1 All expressions in λα are arrays. Each array has a shape which defines
how components within arrays can be selected.

DD 2 Scalar expressions, such as constants or functions, are 0-dimensional ob-
jects with empty shape. Note that this maintains the property that all arrays
consist of as many elements as the product of their shape, since the product
of an empty shape is defined through the neutral element of multiplication,
i.e. the number 1.

DD 3 Arrays are rectangular — the index space of every array forms a hyper-
rectangle. This allows the shape of an array to be defined by a single vector
containing the element count for each axis of the given array.

DD 4 Nested arrays that cater for inhomogeneous nesting are not supported.
Homogeneously nested array expressions are considered isomorphic with non-
nested higher-dimensional arrays. Inhomogeneous nesting, in principle, can

be supported by adding dual constructs for enclosing and disclosing an en-
tire array into a singleton, and vice versa. DD 2 implies that functions and
function application can be used for this purpose.

DD 5 λα supports infinitely many distinct empty arrays that differ only in their
shapes. In the definition of array calculi, the choice whether there is only
one empty array or several has consequences on the universal equalities that
hold. While a single empty array benefits value-focussed equalities, structural
equalities require knowledge of array shapes, even when those arrays are
empty. In this work, we assume an infinite number of empty arrays; any
array with at least one shape element being 0 is empty. Empty arrays with
different shape are considered distinct. For example, the empty arrays of
shape [3, 0] and [0] are different arrays.

4.1 Syntax Definition and Informal Semantics of λα

c ::= 0, 1, . . . , (numbers)
| true, false (booleans)

e ::= c (constants)
| x (variables)
| λx.e (abstractions)
| e e (applications)
| if e then e else e (conditionals)
| letrec x = e in e (recursive let)
| e+ e, . . . (built-in binary)
| [e, . . . , e] (array constructor)
| e.e (selections)
| |e| (shape operation)
∼

∼
| reduce e e e (reduction)

| imap s


g1 : e1,

. . .

gn : en

(index map)

s ::= e (scalar imap)
| e|e (generic imap)

g ::= (e <= x < e) (index set)
| (x) (full index set)

Fig. 1. The syntax of λα

We define the syntax of λα in Fig. 1. Its core is an untyped, applied λ-calculus.
Besides scalar constants, variables, abstractions and applications, we introduce
conditionals, a recursive let operator and some basic functions on the constants,
including arithmetic operations such as +, -, *, /, a remainder operation denoted
as %, and comparisons <, <=, =, etc. The actual support for arrays as envisioned by
the aforementioned design principles is provided through five further constructs:
array construction, selection, shape operation, reduce and imap combinators.

All arrays in λα are immutable. Arrays can be constructed by using po-
tentially nested sequences of scalars in square brackets. For example, [1, 2, 3, 4]
denotes a four-element vector, while [[1, 2], [3, 4]] denotes a two-by-two-element
matrix. We require any such nesting to be homogeneous, for adherence to DD 4.
For example, the term [[1, 2], [3]] is irreducible, so does not constitute a value.

The dual of array construction is a built-in operation for element selection,
denoted by a dot symbol, used as an infix binary operator between an array to
select from, and a valid index into that array. A valid index is a vector containing
as many elements as the array has dimensions; otherwise it is undefined.

[1, 2, 3, 4].[0] = 1 [[1, 2], [3, 4]].[1, 1] = 4 [[1, 2], [3, 4]].[1] = ⊥

The third array-specific addition to λα is the primitive shape operation, de-
noted by enclosing vertical bars. It is applicable to arbitrary expressions, as
demanded by DD 1, and it returns the shape of its argument as a vector, leverag-
ing DD 3. For our running examples, we obtain:

∣∣[1, 2, 3, 4]
∣∣ = [4] and

∣∣[[1, 2], [3, 4]]
∣∣ =

[2, 2]. DD 5 and DD 2 imply that we have:∣∣[]∣∣ = [0]
∣∣[[]]∣∣ = [1, 0]

∣∣true
∣∣ = []

∣∣42
∣∣ = []

∣∣λx.x∣∣ = []

λα includes a reduce combinator which in essence, it is a variant of foldl,
extended to allow for multi-dimensional arrays instead of lists. reduce takes three
arguments: the binary function, the neutral element and the array to reduce. For
example, we have:

reduce (+) 0 [[1, 2], [3, 4]] = ((((0 + 1) + 2) + 3) + 4)

assuming row-major traversal order. This allows for shape-polymorphic reduc-
tions such as:

; works f o r s c a l a r s and empty arrays
sum ≡ λa . reduce (λx .λy . x+y) 0 a

The final, and most elaborate, language construct is the imap (index map)
construct. It bears some similarity to the classical map operation, but instead
of mapping a function over the elements of an array, it constructs an array by
mapping a function over all legal indices into the index space denoted by a
given shape expression2. Added flexibility is obtained by supporting a piecewise
definition of the function to be mapped. Syntactically, the imap-construct starts
out with the keyword imap, followed by a description of the result shape (rule s
in Fig. 1). The shape description is followed by a curly bracket that precedes the
definition of the mapping function. This function can be defined piecewise by
providing a set of index-range expression pairs. We demand that the set of index
ranges constitutes a partitioning of the overall index space defined through the
result shape expression, i.e. their union covers the entire index space and the
index ranges are mutually disjoint. We refer to such index ranges as generators
(rule g in Fig. 1), and we call a pair of a generator and its subsequent expression
a partition. Each generator defines an index set and a variable (denoted by x
in rule g in Fig. 1) which serves as the formal parameter of the function to be
mapped over the index set. Generators can be defined in two ways: by means of
two expressions which must evaluate to vectors of the same shape, constituting
the lower and upper bounds of the index set, or by using the underscore notation
which is syntactic sugar for the following expansion rule:

2 For readers familiar with Haskell: the imap defined here derives the index space from
a shape expression. It does not require an argument array of that shape.

(imap s { (i v) . . .) ≡ (imap s { [0, ..., 0︸ ︷︷ ︸
n

] <= iv < s : . . .)

assuming that
∣∣s∣∣ = [n]. The variable name of a generator can be referred to in

the expression of the corresponding partition.

The <= and < operators in the generators can be seen as element-by-element
array counterparts of the corresponding scalar operators which, jointly, specify
sets of constraints on the indices described by the generators. As the index-
bounds are vectors, we have:

v1 <= v2 =⇒
∣∣v1∣∣.[0] =

∣∣v2∣∣.[0] ∧ ∀0 <= i <
∣∣v1∣∣.[0] : v1.[i] <= v2.[i]

In the rest of the paper, we use the same element-wise extensions for scalar
operators, denoting the non-scalar versions with dot on top: c = a+̇b =⇒ c.i =
a.i+ b.i. This often helps to simplify the notation3.

As an example of an imap, consider an element-wise increment of an array a of
shape [n]. While a classical map-based definition can be expressed as map (λx.x+
1) a, using imap, the same operation can be defined as:

imap [n] { [0] <= iv < [n] : a . i v + 1

Having mapping functions from indices to values rather than values to values
adds to the flexibility of the construct. Arrays can be constructed from shape
expressions without requiring an array of the same shape available:

imap [3 , 3] { [0 , 0] <= iv < [3 , 3] : i v . [0] ∗ 3 + iv . [1]

defines a 2-dimensional array [[0, 1, 2], [3, 4, 5], [6, 7, 8]]. Structural manipulations
can be defined conveniently as well. Consider a reverse function, defined as
follows:

r e v e r s e ≡ λa . imap | a | { [0] <= iv < | a | : a . (| a | −̇ i v −̇ [1])

In order to express this with map, one needs to construct an intermediate array,
where indices of a appear as values. Note also that the explicit shape of the
imap construct makes it possible to define shape-polymorphic functions in a way
similar to our definition of reverse. An element-wise increment for arbitrarily
shaped arrays can be defined as:

; works f o r s c a l a r s & empty arrays
increment ≡ λa . imap | a | { (i v) : a . i v + 1

DD 4 allows imap to be used for expressing operations in terms of n-dimensional
sub-structures. All that is required for this is that the expressions on the right
hand side of all partitions evaluate to non-scalar values. For example, matrices
can be constructed from vectors. Consider the following expression:

; non−s ca l a r p a r t i t i o n s (i n co r r e c t attempt)
imap [n] { [0] <= iv < [n] : [1 , 2 , 3 , 4]

3 A formal definition of the extended operator is: (⊕̇) ≡ λa.λb.imap |a| { (iv) : a.iv⊕
b.iv where ⊕ ∈ {+,−, · · · }.

Its shape is [n, 4]; however, this shape no longer can be computed without know-
ing the shape of at least one element. If the overall result array is empty, its
shape determination is a non-trivial problem. To avoid this situation, we require
the programmer to specify the result shape by means of two shape expressions
separated by a vertical bar: see the rule (generic imap) in Fig. 1. We refer to
these two shape expressions as the frame shape which specifies the overall index
range of the imap construct as well as the cell shape which defines the shape of
all expressions at any given index. The concatenation of those two shapes is the
overall shape of the resulting array. For more discussions related to the concepts
of frame and cell shapes, see [4, 2, 3]. The above imap expression therefore needs
to be written as:

; non−s ca l a r p a r t i t i o n s (co r r ec t)
imap [n] | [4] { [0] <= iv < [n] : [1 , 2 , 3 , 4]

to be a legitimate expression of λα. The (scalar imap) case in Fig. 1, which we
use predominantly in the paper, can be seen as syntactic sugar for the generic
version, with the second expression being an empty vector.

5 Transfinite Arrays

Adding the notion of infinity in λα requires two adjustments: turning infinite
imaps into lazy constructs, and deciding arithmetics on infinity. The first ad-
justment is straight-forward, the interface of the imap does not change, but we
do not force all the elements when evaluating an imap expression. Instead we
create a closure, and we update this closure lazily on every selection. For more
details see [].

Arithmetics with infinities is a bit more subtle question. It turns out that
definition of these operations have consequences on the array-algebraic low that
will or will not hold. We extend λα with cardinal infinity ∞ in a standard way:

z +∞ =∞ z ×∞ =∞ z

∞
= 0

z

0
=∞

The following operations are undefined:

∞+∞ ∞−∞ ∞× 0
0

0

∞
∞

We now investigate to what extent λ∞α adheres to the key properties of array
programming — array algebras and array equalities.

5.1 Algebraic Properties

Array-based operations offer a number of beneficial algebraic properties. Typi-
cally, these properties manifest themselves as universally valid equalities which,
once established, improve our thinking about algorithms and their implemen-
tations, and give rise to high-level program transformations. We define equality
between two non-scalar arrays a and b as

a == b⇐⇒ |a| = |b| ∧ ∀ iv < |a| : a.iv = b.iv

that is, we demand equality of the shapes and equality of all elements. The
demand for equality of shapes recursively implies equality in dimensionality and
the extensional character of this definition through the use of array selections
ensures that we can reason about equality on infinite arrays as well.

Arrays give rise to many algebras such as Theory of Arrays [16], Mathematics
of Arrays [17], and Array Algebras [9]. Most of the developed algebras differ
only slightly, and the set of equalities that are ultimately valid depends on some
fundamental choices, such as the ones we made in the beginning of the previous
section. At the core of these equalities is the ability to change the shape of arrays
in a systematic way without losing any of their data.

An equality from [8] that plays a key role in consistent shape manipulations
is:

reshape |a| (flatten a) == a (1)

where flatten maps an array recursively into a vector by concatenating its sub-
arrays in a row-major fashion and reshape performs the dual operation of bring-
ing a row-major linearisation back into multi-dimensional form. These operations
can be defined in λ∞α as

f l a t t e n ≡ λa . imap [count a] { (i v) : a . (o2 i i v . [0] | a |)
reshape ≡ λshp .λa . imap shp { (i v) : (f l a t t e n a) . [i 2o iv shp]

where count returns the product of all shape components and o2i and i2o trans-
late offsets into indices and vice versa, respectively. These operations effectively
implement conversions from mixed-radix systems into natural numbers using
multiplications and additions and back using division and remainder operations.

The above equality states that any array a can be brought into flattened form
and, subsequently be brought back to its original shape. For arrays of finite shape
s, this follows directly from the fact that o2i (i2o iv s) s = iv for all legitimate
index vectors iv into the shape s.

If we want Eq. 1 to hold for all arrays in λ∞α , we need to show that the above
equality also holds for arrays with infinite axes. Consider an array of shape
s = [2,∞]. For any legal index vector [1, n] into the shape s, we obtain:

o2i (i2o [1, n] [2,∞]) [2,∞]) = o2i (∞ · 1 + n) [2,∞]

= o2i ∞ [2,∞]

= [∞ / ∞, ∞ % ∞]

which is not defined. We can also observe that all indices [1, n] are effectively
mapped into the same offset: ∞ which is not a legitimate index into any array
in λ∞α . This reflects the intuition that the concatenation of two infinite vectors
effectively looses access to the second vector.

The inability to concatenate infinite arrays also makes the following equality
fail:

drop |a| (a ++ b) == b (2)

where a and b are vectors and drop s x removes first s elements from the left.
The reason is exactly the same: given that |a| = [∞] and b is of finite shape [n],

the shape of the concatenation is [∞ + n] = [∞], and drop of |a| results in an
empty vector.

Clearly, λ∞α as presented so far is not strong enough to maintain universal
equalities such as Eq. 1 or 2. Instead, we have to find a way that enables us
to represent sequences of infinite sequences that can be distinguished from each
other.

5.2 Ordinals

When numbers are treated in terms of cardinality, they describe the number of
elements in a set. Addition of two cardinal numbers a and b is defined as a size
of a union of sets of a and b elements. This notion also makes it possible to
operate with infinite numbers, where the number of elements in an infinite set is
defined via bijections. As a result, differently constructed infinite sets may end
up having the same number of elements. For example, if there exists a bijection
from N× N into N, the cardinality of both sets is the same.

When studying arrays, treating their shapes and indices using cardinal num-
bers is an oversimplification, because arrays have richer structure. Arrays are
collections of ordered elements, where the order is established by the indices.
Ordinal numbers, as introduced by G. Cantor in 1883, serve exactly this purpose
— to “label” positions of objects within an ordered collection. When collections
are finite, cardinals and ordinals can be used interchangeably, as we can always
count the labels. Infinite collections are quite different in that regard: despite
being of the same size, there can be many non-isomorphic well-orderings of an
infinite collection. For example, consider two infinite arrays of shapes [∞, 2] and
[2,∞]. Both of these have infinitely many elements, but they differ in their struc-
ture. From a row major perspective, the former is an infinite sequence of pairs,
whereas the latter are two infinite sequences of scalars. Ordinals give a formal
way of describing such different well-orderings.

First let us try to develop an intuition for the concept of ordinal numbers
and then we give a formal definition. Consider an ordered sequence of natural
numbers: 0 < 1 < 2 < · · · . These are the first ordinals. Then, we introduce a
number called ω that represents the limit of the above sequence: 0 < 1 < 2 <
· · · < ω. Further, we can construct numbers beyond ω by putting a “copy” of
natural numbers “beyond” ω:

0 < 1 < 2 < · · ·ω < ω + 1 < ω + 2 < · · · < ω + ω

For the time being, we treat operations such as ω+n symbolically. The number
ω + ω which can be also denoted as ω · 2 is the second limit ordinal that limits
any number of the form ω + n, n ∈ N. Such a procedure of constructing limit
ordinals out of already constructed smaller ordinals can be applied recursively.
Consider a sequence of ω · n numbers and its limit:

0 < ω < ω · 2 < ω · 3 < · · · < (ω · ω = ω2)

and we can carry on further to ωn, ωω, etc. Note though that in the interval
from ω2 to ω3 we have infinitely many limit ordinals of the form:

ω2 < ω2 + ω < ω2 + ω · 2 < · · · < ω3

and between any two of these we have a “copy” of the natural numbers:

ω2 + ω < ω2 + ω + 1 < · · · < ω2 + ω · 2

For more details on ordinals including formal definitions, operations and their
implementation can be found in [15].

5.3 Heh: Adding Ordinals to λα

The key contribution of this paper is the introduction of Heh, a variant of λα,
which use ordinals as shapes and indices of arrays and which reestablishes global
equalities in the context of infinite arrays.

Before revisiting the equalities, we look at the changes to λα that are required
to support transfinite arrays. Syntactically, to introduce ordinals in the language,
we make two minor additions to λα. Firstly, we add ordinals4 as scalar constants.
Secondly, we add a built-in operation, islim, which takes one argument and
returns true if the argument is a limit ordinal and false otherwise. For example:
islim ω reduces to true and islim (ω + 21) reduces to false.

λα with ordinals extends λα

e ::= · · ·
| islim (limit ordinal predicate)

c ::= · · ·
| ω, ω + 1, . . . (ordinals)

Fig. 2. The syntax of Heh.

Semantically, it turns out that all core rules can be kept unmodified apart
from the aspect that all helper functions, arithmetic, and relational operations
now need to be able to deal with ordinals instead of natural numbers.

5.4 Array Equalities Revisited

With the support of Ordinals in Heh, we can now revisit our equalities Eq. 1
and 2. Let us first look at the counter example for Eq. 1: from Section 5.1: With

4 Technically, we support ordinal values only up to ωω, as ordinals are constructed
using the constant ω and +, −, ∗, / and % operations (no built-in ordinal exponen-
tiation).

an array shape s = [2, ω] and a legal index vector into s [1, n], we now obtain:

o2i (i2o [1, n] [2, ω]) [2, ω]) = o2i (ω + n) [2, ω]

= [(ω + n) / ω, (ω + n) % ω]

= [1, n]

The crucial difference to the situation from λ∞α in Section 5.1 here is the ability
to divide (ω+n) by ω and to obtain a remainder, denoted by %, of that division
as well. By means of induction over the length of the shape and index vectors
this equality can be proven to hold for arbitrary shapes in Heh, and, based on
this proof, Eq. 1 can be shown as well.

6 Examples

The shift from natural numbers to ordinals as indices in Heh implies correspond-
ing extensions of the built-in arithmetic operations. As these operations lose key
properties, such as commutativity, once arguments exceed the range of natural
numbers, we need to ensure that function definitions for finite arrays extend
correctly to the transfinite case.

Transfinite tail As an example, consider the definition of tail from the previous
section:

t a i l ≡ λa . imap | a | −̇ [1] { (i v) : a . ([1] +̇ i v)

For the case of finite vectors, we can see that a vector shortened by one element
is returned, where the first element is missing and all elements have been shifted
to the left by one element.

Let us assume we apply tail to an array a with |a| = [ω]. The arithmetic on
ordinals gives us a return shape of [ω]−̇[1] = [ω]. That is, the tail of an infinite
array is the same size as the array itself, which matches our common intuition
when applying tail to infinite lists. The elements of that infinite list are those
of a, shifted by one element to the right, which, again, matches our expected
interpretation for lists.

Now, assume we have |a| = [ω+42], which means that (tail a).[ω] should be a
valid expression. For the result shape of tail a, we obtain [ω+42]−̇[1] = [ω+42].
A selection (tail a).[ω] evaluates to a.([1]+̇[ω]) = a.[ω]. This means that the
above definition of the tail shifts all the elements at indices smaller than [ω] one
left, and leaves all the other unmodified. While this may seem counter-intuitive
at first, it actually only means that tail can be applied infinitely often but will
never be able to reach “beyond” the first limit.

Finally, observe that the body of the imap-construct in the definition of tail
uses [1]+̇iv is an index expression, not iv+̇[1]. In the latter case, the tail function
would behave differently beyond [ω]: it would attempt to shift elements to the
left. However, this would make the overall definition faulty. Consider again the
case when |a| = [ω+42]: the shape of the result would be |a|, which would mean
that it would be possible to index at position [ω + 41], triggering evaluation of

a.([ω + 41]+̇[1]) and consequently, producing an index error, or out-of-bounds
access into a.

Zip Let us now define zip of two vectors that produces a vector of tuples. Con-
sider a Haskell definition of zip function first:

zip (a : as) (b : bs) = (a , b) : zip as bs
zip = []

The result is computed lazily, and the length of the resulting list is a minimum of
the lengths of the arguments. Like concatenation, a literal translation into Heh
is possible, but it has the same drawbacks, i.e. it is restricted to arrays whose
shape has no components bigger than ω.

A better version of zip that can be applied to arbitrary transfinite arrays
looks as follows:

z ip ≡ λa .λb . imap (min | a | | b |) | [2] { (i v) : [a . iv , b . i v]

Here, we use a constant array in the body of the imap. This forces evaluation
of both arguments, even if only one of them is selected. This can be changed by
replacing the constant array with an imap:

z ip ≡ λa .λb . imap (min | a | | b |) | [2] { (i v) : imap [2] { [0] <= jv < [1] a . iv ,
[1] <= jv < [2] b . i v

which can be fused in a single imap as follows:

z ip ≡ λa .λb . letrec s = (min | a | | b |) . [0] in
imap [s , 2] { [0 , 0] <= iv < [s , 1] : a . [i v . [0]] ,

[0 , 1] <= iv < [s , 2] : b . [i v . [0]]

Data Layout and Transpose A typical transformations in stream programming
is changing the granularity of a stream and joining multiple streams. In Heh,
these transformations can be expressed by manipulating the shape of an infinite
array. Consider changing the granularity of a stream a of shape [ω] into a stream
of pairs:

imap (| a | /̇ [2]) | [2] { (i v) : [a . [2 ∗ i v . [0]] , a . [2 ∗ i v . [0] + 1]]

or we can express the same code in a more generic fashion:

(λn . reshape ((| a | /̇ [n])++[n]) a) 2

This code can operate on the streams of transfinite length, as well. If we envision
compiling such a program into machine code, the infinite dimension of an array
can be seen as a time-loop, and the operations at the inner dimension seen as
a stream-transforming function. Such granularity changes are often essential for
making good use of (parallel) hardware resources, e.g. FPGAs.

Transposing a stream makes it possible to introduce synchronisation. Con-
sider transforming a stream a of shape [2, ω] into a stream of pairs (shape [ω, 2]):

imap [ω] | [2] { (i v) : [a . [i v . [0] , 0] , a . [i v . [0] , 1]]

Conceptually, an array of shape [2, ω] represents two infinite streams that reside
in the same data structure. An operation on such a data structure can progress
independently on each stream, unless some dependencies on the outer index
are introduced. A transpose, as above, makes it possible to introduce such a
dependency, ensuring that the operations on both streams are synchronized.
A key to achieving this is the ability to re-enumerate infinite structures, and
ordinal-based infinite arrays make this possible.

Ackermann function The true power of multidimensional infinite arrays mani-
fests itself in definitions of non-primitive-recursive sequences as data. Consider
the Ackermann function, defined as a multi-dimensional stream:

letrec a = imap [ω , ω] { (i v) : letrec m = iv . [0] in
letrec n = iv . [1] in
i f m = 0 then n + 1
else i f m > 0 and n = 0 then a . [m−1, 1]
else a . [m−1, a . [m, n−1]] in a

Such a treatment of multi-dimensional infinite structures enables simple
transliteration of recursive relations as data. Achieving similar recursive defini-
tions when using cons-lists is possible, but they have a subtle difference. Consider
a Haskell definition of the Ackermann function in data:

a = [[i f m == 0 then n+1
else i f m > 0 then a ! ! (m−1) ! ! 1
else a ! ! (m−1) ! ! (a ! ! m ! ! (n−1))

| n <− [0 . .]]
| m <− [0 . .]]

We use two [0..] generators for explicit indexing, even though at runtime, all
necessary elements of the list will be present. The lack of explicit indexes forces
one to use extra objects to encode the correct dependencies, essentially imple-
menting imap in Haskell. Conceptually, these generators constitute two further
locally recursive data structures. Whether they can be always can be optimised
away is not clear. Avoiding these structures in an algorithmic specification can
be a major challenge.

Game of Life As a final example, consider Conway’s Game of Life which de-
scribes an evolution of cells on a plane. The most interesting aspect of this
example is the fact that we can encode it in Heh in such a way that the shape
of the plane is never specified. This means that the program can operate with
infinite planes, e.g. of shape [ω, ω], as well as finite 2d planes with no changes to
source code.

First we introduce a few generic helper functions:

(or) ≡ λa .λb . i f a then a else b
(and) ≡ λa .λb . i f a then b else a
any ≡ λa . reduce or f a l s e a
gen ≡ λs .λv . imap s { (i v) : v
↖ ≡ λv .λa . imap | a | { (i v) : i f any (iv +̇v >̇= | a |) then 0 else a . (i v +̇v)
↘ ≡ λv .λa . imap | a | { (i v) : i f any (iv <̇ v) then 0 else a . (i v −̇v)

or and and encode logical conjunction and disjunction, respectively. any folds
an array of boolean expressions with the disjunction, and gen defines an array
of shape s whose values are all identical to v. More interesting are the func-
tions ↖ and ↘. Given a vector v and an array a, they shift all elements of
a towards decreasing indices or increasing indices by v elements, respectively.
Missing elements are treated as the value 0.

Now, we define a single step of the 2-dimensional Game of Life in APL style5:
two-dimensional array a by:

g o l s t e p ≡ λa .
letrec F = [↖ [1 , 1] , ↖ [1 , 0] , ↖ [0 , 1] , λ x . ↖ [1 , 0] (↘ [0 , 1] x) ,

↘ [0 , 1] , ↘ [1 , 0] , ↘ [1 , 1] , λ x . ↘ [1 , 0] (↖ [0 , 1] x)]
in letrec

c = (reduce (λ f .λg .λx . f x +̇ g x) (λx . gen | a | 0) F) a
in

imap | a | { (i v) : i f (c . i v = 2 and a . i v = 1) or (c . i v = 3)
then 1
else 0

We assume an encoding of a live cell in a to be 1, and a dead cell to be 0.
The array F contains partial applications of the two shift functions to two-
element vectors so that shifts into all possible directions are present. The actual
counting of live cells is performed by a function which folds F with the function
λf.λg.λx.f x + g x. This produces c, an array of the same shape as a, holding
the numbers of live cells surrounding each position. Defining the shift operations
↖ and ↘ to insert 0 ensures that all cells beyond the shape of a are assumed
to be dead.

The definition of the result array is, therefore, a straightforward imap, im-
plementing the rules of birth, survival and death of the Game of Life.

7 Implementation

We implement two flavours of Heh6:

1. an interpreter which includes ordinal-indexed arrays, and
2. a compiler for the strict and finite subset of Heh.

The interpreter can be seen as a proof of concept that the proposed semantics
is implementable. The implementation is an almost literal translation of the
semantic rules provided in[] into Ocaml code. We carefully implement updates
in-place for imap closures, ensuring that these constructs are evaluated lazily
rather than in normal order. All examples provided in the paper can be found
in that repository, and run, correctly, in Heh.

Compilation of the finite subset of Heh is achieved by translating Heh pro-
grams into SaC programs and subsequently using the compiler sac2c to produce
binaries. Multi-core and GPU backends of sac2c can be leveraged to execute
strict and finite Heh programs in parallel on these types of architectures. The

5 See this video by John Scholes for more details: https://youtu.be/a9xAKttWgP4
6 The implementation is available on Github https://github.com/ashinkarov/heh.

Heh implementation comes with more than a 100 unit tests for its internal com-
ponents.

In the interpreter, ordinals are represented by their Cantor Normal Form. The
algorithms for implementing operations on ordinals are based on [15]. In the same
paper, we also find an in-depth study of the complexities of ordinal operations:
comparisons, additions and subtractions have complexities O(n), where n is the
minimum of the lengths of both arguments; multiplications have the complexity
O(n ·m), where m and n are the lengths of the two argument representations.

7.1 Performance considerations

Our compiler for the strict and finite sublanguage of Heh shows that this part
of the language can be mapped into languages such as SaC, leading to high-
performance execution potential on variouss platforms [23, 20]. Whether the full-
fledged version of Heh can be compiled into high-performance codes as well,
mainly relies on the answers to two questions:

1. how can we handle finite expressions that are defined by means of recursive
imaps, and

2. what is the most efficient representation for transfinite arrays.

Recursive imaps Strict data parallel languages like SaC rarely support recursive
imap constructs, even if the shape of the result is finite. There are two difficulties:
(i) the evaluation of recursive imaps results in the necessity to support imap clo-
sures; (ii) parallel implementation of a recursive imap becomes trickier because
of potential dependencies between the elements of an array. In [22] we propose
an elegant solution to this problem. We introduce a mechanism that switches
from strict to lazy evaluation of a potentially recursive imap. It is demonstrated
that the lifetime of imap closures is kept to a minimum and that a parallel imple-
mentation is possible. Furthermore, the proposed solution enables the detection
of cyclic array definitions that diverge under strict semantics.

Data structures The current semantics prescribes that, when evaluating selec-
tions into a lazy imap, the partition that contains the index that is to be se-
lected from has to be split into a single-element partition and the remainder.
This means that, as the number of selections into the imap increases, the struc-
ture that stores partitions of the imap will have to deal with a large number
of single-element arrays. Partitions can be stored in a tree, providing O(log n)
look-up; however triggering a memory allocation for every scalar is likely to be
very inefficient. An alternate approach would be to allocate larger chunks, each
of which would store a subregion of the index space of an imap. When doing so,
we would need to establish a policy on the size of chunks and chose a mechanism
on how to indicate evaluated elements in a chunk. Another possibility would
be to combine the chunking with some strictness speculation, using a technique
similar to the one presented in [22]. That way, a single element selection could
trigger the evaluation of an entire chunk.

Memory management An efficient memory management model is not obvious.
In case of strict arrays, reference counting is known to be an efficient solution [5,
10]. For lazy data structures, garbage collection is usually preferable. Most likely,
the answer lies in a combination of those two techniques.

The imap construct offers an opportunity for garbage collection at the level
of partitions. Consider a lazy imap of boolean values with a partition that has
a constant expression:

imap [ω] { . . . , l <= iv < u : f a l s e , . . .

Assume further that neighbouring partitions evaluate to false. In this case, we
can merge the boundaries of partitions and instead of keeping values in memory,
the partition can be treated as a generator. However, an efficient implementation
of such a technique is non-trivial.

Ordinals An efficient implementation of ordinals and their operations is also
essential. Here, we could make use of the fact that Heh is limited to ordinals up
to ωω. For further details see [21, Sec. 4]

8 Conclusions and Future Work

This paper demonstrates a unified framework for arrays and streams. Within
this framework streams are interpreted as transfinite arrays — infinite arrays
indexed by ordinals. Under such an interpretation it becomes possible to write
generic programs that equally operate on finite and infinite input data.

We show that within such a framework, typical streaming abstractions, simi-
lar to those found in the StreamIt language, can be encoded in a straight-forward
and natural way. This gives a rise to mechanical translation of streaming appli-
cations into the proposed framework. By doing so, the same specification can be
used to generate the code for finite and infinite input data. In finite case, a large
body of existing work on array optimisations becomes immediately applicable.

Overall, this unification removes a typical distinction between opaque filters
and filter combinators that exists in most of the streaming languages. With-
out such a distinction, program optimisations that change the granularity of
streaming networks can be easily expressed.

The array-based nature of the proposed framework brings the built-in con-
cept of multi-dimensional arrays in the world of streams. A number of multi-
dimensional problems can be specified as streams. For example consider Ack-
erman function or a Game of Life problem from our examples. As ordinals are
being used for indexing arrays, a number of program transformations that are
based on array-algebraic laws can be applied to streams.

The concept of transfinite arrays opens up exciting perspectives for future
research. As we mentioned in the implementation, it is not yet fully clear what
is the best representation for infinite arrays. Current implementation provides
no primitives to encode hints to a compiler that certain expressions should be
streamed. Application of existing memory contraction techniques to the proposed

framework would require some extensions to handle arrays of transfinite shapes.
Finally, the question on how to estimate a static space bound for the given
specification requires further investigation.

References

1. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B., Pers-
son, A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: A domain specific
language for digital signal processing algorithms. In: Eighth ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign (MEMOCODE
2010). pp. 169–178 (July 2010). https://doi.org/10.1109/MEMCOD.2010.5558637

2. Bernecky, R.: An introduction to function rank. ACM SIGAPL Quote Quad 18(2),
39–43 (Dec 1987)

3. Bernecky, R.: The role of APL and J in high-performance computation. ACM
SIGAPL Quote Quad 24(1), 17–32 (Aug 1993)

4. Bernecky, R., Iverson, K.E.: Operators and enclosed arrays. In: APL Users Meeting
1980. pp. 319–331. I.P. Sharp Associates Limited, I.P. Sharp Associates Limited,
Toronto, Canada (1980)

5. Cann, D.: Compilation Techniques for High Performance Applicative Computation.
Tech. Rep. CS-89-108, Lawrence Livermore National Laboratory, LLNL, Livermore
California (1989)

6. Chakravarty, M.M.T., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal —
Nested Data Parallelism in Haskell, pp. 524–534. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

7. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
haskell array codes with multicore gpus. In: Proceedings of the POPL 2011 Work-
shop on Declarative Aspects of Multicore Programming, DAMP 2011, Austin, TX,
USA, January 23, 2011. pp. 3–14. ACM (2011)

8. Falster, P., Jenkins, M.: Array Theory and Nial (1999)
9. Glasgow, J.I., Jenkins, M.A.: Array theory, logic and the nial language. In: Pro-

ceedings. 1988 International Conference on Computer Languages. pp. 296–303 (Oct
1988). https://doi.org/10.1109/ICCL.1988.13077

10. Grelck, C., Scholz, S.: SAC - A functional array language for ef-
ficient multi-threaded execution. International Journal of Parallel Pro-
gramming 34(4), 383–427 (2006). https://doi.org/10.1007/s10766-006-0018-x,
http://dx.doi.org/10.1007/s10766-006-0018-x

11. Henriksen, T., Oancea, C.E.: Bounds checking: An instance of hybrid analysis.
In: Proceedings of ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. pp. 88:88–88:94. ARRAY’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2627373.2627388,
http://doi.acm.org/10.1145/2627373.2627388

12. Iverson, K.E.: A Programming Language. John Wiley & Sons, Inc., New York,
NY, USA (1962)

13. Jenkins, M.A., Mullin, L.R.: A Comparison of Array Theory and a Mathematics
of Arrays, pp. 237–267. Springer US, Boston, MA (1991)

14. Jsoftware, I.: Jsoftware: High performance development platform.
http://www.jsoftware.com/ (2016)

15. Manolios, P., Vroon, D.: Ordinal arithmetic: Algorithms and mech-
anization. Journal of Automated Reasoning 34(4), 387–423 (2005).

https://doi.org/10.1007/s10817-005-9023-9, http://dx.doi.org/10.1007/s10817-
005-9023-9

16. More, T.: Axioms and theorems for a theory of arrays. IBM J. Res.
Dev. 17(2), 135–175 (Mar 1973). https://doi.org/10.1147/rd.172.0135,
http://dx.doi.org/10.1147/rd.172.0135

17. Mullin, L.M.R.: A Mathematics of Arrays. Ph.D. thesis, Syracuse University (1988)
18. Scholz, S.B.: Single Assignment C: Efficient Support for High-level

Array Operations in a Functional Setting 13(6), 1005–1059 (2003).
https://doi.org/10.1017/S0956796802004458

19. Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamit: A language for stream-
ing applications. In: Proceedings of the 11th International Conference on Com-
piler Construction. pp. 179–196. CC ’02, Springer-Verlag, London, UK, UK (2002),
http://dl.acm.org/citation.cfm?id=647478.727935

20. Šinkarovs, A., Scholz, S., Bernecky, R., Douma, R., Grelck, C.: SAC/C for-
mulations of the all-pairs N-body problem and their performance on SMPs
and GPGPUs. Concurrency and Computation: Practice and Experience (2013).
https://doi.org/10.1002/cpe.3078

21. Šinkarovs, A., Scholz: Operational semantics of lambda-omega. (2018),
https://goo.gl/MeZpbr

22. Šinkarovs, A., Scholz, S.B., Stewart, R., Vießmann, H.N.: Recursive array com-
prehensions in a call-by-value language. (to appear). In: Proceedings of the 29th
Symposium on the Implementation and Application of Functional Programming
Languages. IFL ’17 (2017)

23. Wieser, V., Grelck, C., Haslinger, P., Guo, J., Korzeniowski, F., Ber-
necky, R., Moser, B., Scholz, S.: Combining high productivity and high
performance in image processing using Single Assignment C on multi-core
CPUs and many-core GPUs. Journal of Electronic Imaging 21(2) (2012).
https://doi.org/10.1117/1.JEI.21.2.021116

