
High Performance Stencil Code Generation with Lift

Bastian Hagedorn

University of Münster

Larisa Stoltzfus

The University of Edinburgh

Michel Steuwer

University of Glasgow

Sergei Gorlatch

University of Münster

Christophe Dubach

The University of Edinburgh

Introduction Stencils are a class of algorithms which up-

date elements in a multi-dimensional grid based on neighbor-

ing values using a fixed pattern. They are used extensively in

various domains such as medical imaging, numerical meth-

ods or machine-learning. Stencils are part of the original

“seven dwarfs” [1] and are considered one of the most rele-

vant classes of high-performance computing applications.

However, efficient programming of stencils for parallel ac-

celerators such as Graphics Processing Units (GPUs) is chal-

lenging even for experienced programmers. Hand-optimized

high-performance stencil code is usually written using low-

level programming languages like OpenCL or CUDA. Achiev-

ing high-performance requires expert knowledge to manage

every hardware detail. For instance, special care is required

on how parallelism is mapped to GPUs or how data locality

is exploited with local memory to maximize performance.

Domain Specific Languages (DSLs) and high-level library

approaches have been successful at simplifying HPC applica-

tion development. These approaches are based on algorith-

mic skeletons [3] which are recurring patterns of parallel

programming. While these raise the abstraction level, they

rely on hard-coded, not performance portable implementa-

tions. Alternative approaches are based on code generation,

which places a huge burden on the implementers who have

to reinvent the wheel for each new application domain.

Extending Lift for Stencil Computations Lift [5] is a

novel code generation approach based on a high-level, data-

parallel intermediate language whose central tenet is per-

formance portability. It is designed as a target for DSLs and

library authors, and exploits functional principles to produce

high-performance GPU code. Applications are expressed us-

ing a small set of functional primitives and optimizations are

all encoded as formal, semantics-preserving rewrite rules.

These rules define an optimization space which is automati-

cally searched for high-performance code [7]. Lift liberates

DSL implementers from the tedious process of re-writing

and tuning their code for each new domain or hardware.

Instead of expressing stencil computations using a single

high-level stencil primitive, as often seen in other high-level

approaches, e.g. [2, 6], in Lift we aim for composability and

instead express stencil computations using smaller funda-

mental building blocks. Figure 1 shows how stencil com-

putations are expressed in Lift. Stencil computations are

decomposed into three fundamental parts, each represented

by a primitive: (1) boundary handling is performed using

...

3-point stencil

input

output

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 90 9

1 2 3

boundary handling
using pad

create neighborhoods
using slide

compute output element
 using map stencilfunction

1

2

3

0 1 2 1 2 3 8 9 9

Figure 1. Expressing a stencil in Lift using pad for boundary
handling, slide for creating the neighborhood and map to

compute the output elements. These three logical steps are

compiled into a single efficient OpenCL kernel by Lift.

pad which specifies how to handle neighboring values for

elements at the borders of the input grid; (2) for every ele-

ment of the input, a neighborhood is accessed specified by

the shape of the stencil (slide); (3) for each neighborhood, a

single output element is computed (reusing map).
By composing generic, intuitive 1D primitives, complex

multi-dimensional stencils are expressible, demonstrating

the extensibility of the Lift approach to new application

domains. In Lift, optimizations are encoded as rewrite rules.

Overlapped tiling, a stencil-specific optimization, is formal-

ized and added as a new rewrite rule targeting the introduced

new primitives. Besides adding two new primitives (slide and
pad) and the overlapped tiling rule, we reuse Lift’s existing

set of rewrite rules and search space exploration.

Results In our experimental evaluation, we show that Lift

automatically generates high-performance stencil code for

AMD, NVIDIA and ARMGPUs. The results show that our ap-

proach is highly competitive with hand-written implementa-

tions and outperforms the state-of-the-art PPCG polyhedral

compiler. For some benchmarks, the hand-written implemen-

tations show large performance differences across architec-

tures. However, Lift is able to achieve good performance on

all architectures, providing performance portability.

A full paper of this work has been presented at CGO’18 [4].

1

Conference’17, July 2017, Washington, DC, USA B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach

References

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester

Plishker, John Shalf, Samuel Webb Williams, et al. 2006. The Landscape
Of Parallel Computing Research: A View From Berkeley. Technical Re-
port. UCB/EECS-2006-183, EECS Department, University of California,

Berkeley.

[2] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. PATUS:

A Code Generation And Autotuning Framework For Parallel Iterative

Stencil Computations on Modern Microarchitectures. In IPDPS. IEEE,
676–687.

[3] Murray I Cole. 1988. Algorithmic Skeletons: A Structured Approach To The
Management Of Parallel Computation. Ph.D. Dissertation. University of

Edinburgh.

[4] BastianHagedorn, Larisa Stoltzfus,Michel Steuwer, Sergei Gorlatch, and

Christophe Dubach. 2018. High Performance Stencil Code Generation

with Lift. In CGO. ACM.

[5] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach.

2015. Generating Performance Portable Code Using Rewrite Rules: From

High-Level Functional Expressions ToHigh-Performance OpenCL Code.

In ICFP. ACM, 205–217.

[6] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gorlatch.

2014. High-Level Programming Of Stencil Computations On Multi-

GPU Systems Using The SkelCL Library. Parallel Processing Letters 24,
03 (2014), 1441005.

[7] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift:

A Functional Data-Parallel IR For High-Performance GPU Code gener-

ation. In CGO. ACM, 74–85.

2

	References

