
Lightweight threading support in LLVM

Kavon Farvardin
University of Chicago

John Reppy
University of Chicago

A lightweight and efficient mechanism for user-space threads is an important building block
for parallel and concurrent language implementations. It is particularly advantageous when the
compiler has an internal representation for the threading primitives that can enable optimization
a scheduling code. In our Parallel ML (PML) compiler (part of the Manticore project), we have
taken an approach based on supporting heap-allocated first-class continuations in the intermediate
language. This approach has allowed us to build efficient work-stealing, user-level threading, and
other mechanisms for parallel and concurrent programming [4, 1, 7].

We used the MLRisc [6, 5] code generation framework as the backend of our PML compiler.
MLRisc gave us the flexibility to customize our calling and runtime conventions to support efficient
first-class continuations, but it is not being actively developed anymore. As an alternative, we have
recently been exploring how to achieve the same lightweight support for threading using the LLVM
code generation infrastructure.

While LLVM has been used to support a wide range of languages, it has very strong biases
toward traditional C-like runtime conventions. To support first-class continuations in LLVM, we
had to develop a new calling convention for LLVM as well as a mechanism for reifying implicit
continuations inside LLVM functions [3, 2] Building on this work, we implemented four different
runtime models for threading in our compiler on top of LLVM. These implementations provide an
apples-to-apples comparison of the different approaches.

In the full paper, we will describe how LLVM can be made to support non-traditional runtime
conventions that, in turn, can be used to implement lightweight efficient threading mechanisms.

References

[1] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Lazy tree splitting.
JFP, 22(4-5):382–438, September 2012.

[2] Kavon Farvardin. Weighing continuations for concurrency. Master’s thesis, Department of
Computer Science, University of Chicago, Chicago IL, 2017.

[3] Kavon Farvardin and John Reppy. Compiling with continuations and LLVM. In ML ’16,
September 2016.

[4] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism in
Manticore. JFP, 20(5–6):537–576, 2011.

[5] Lal George and Andrew Appel. Iterated register coalescing. ACM TOPLAS, 18(3):300–324,
May 1996.

[6] Lal George, Florent Guillame, and John Reppy. A portable and optimizing back end for the
SML/NJ compiler. In CC ’94, number 786 in LNCS, pages 83–97, New York, NY, April 1994.
Springer-Verlag.

[7] John Reppy, Claudio Russo, and Yingqi Xiao. Parallel Concurrent ML. In ICFP ’09, pages
257–268, New York, NY, August–September 2009. ACM.


