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Abstract—Managed language runtimes such as the Java Vir-
tual Machine (JVM) provide adequate performance for a wide
range of applications, but at the same time, they lack much
of the low-level control that performance-minded programmers
appreciate in languages like C/C++. One important example
is the intrinsics interface that exposes instructions of SIMD
(Single Instruction Multiple Data) vector ISAs (Instruction Set
Architectures). In this paper we present an automatic approach
for including native intrinsics in the runtime of a managed
language. Our implementation consists of two parts. First, for
each vector ISA, we automatically generate the intrinsics API
from the vendor-provided XML specification. Second, we employ
a metaprogramming approach that enables programmers to
generate and load native code at runtime. In this setting,
programmers can use the entire high-level language as a kind
of macro system to define new high-level vector APIs with zero
overhead. As an example use case we show a variable precision
API. We provide an end-to-end implementation of our approach
in the HotSpot VM that supports all 5912 Intel SIMD intrinsics
from MMX to AVX-512. Our benchmarks demonstrate that this
combination of SIMD and metaprogramming enables developers
to write high-performance, vectorized code on an unmodified
JVM that outperforms the auto-vectorizing HotSpot just-in-time
(JIT) compiler and provides tight integration between vectorized
native code and the managed JVM ecosystem.

I. INTRODUCTION

Managed high-level languages are designed to be portable
and to support a broad range of applications. For the pro-
grammer, the price is reduced access to detailed and low-
level performance optimizations. In particular, SIMD vector
instructions on modern architectures offer significant paral-
lelism, and thus potential speedup, but neither languages like
Java, JavaScript, Python, or Ruby, nor their managed runtimes
provide direct access to SIMD facilities. This means that
SIMD optimizations, if available at all, are left to the virtual
machine (VM) and the built-in just-in-time (JIT) compiler
to carry out automatically, which often leads to suboptimal
code. As a result, developers may be pushed to use low-
level languages such as C/C++ to gain access to the intrinsics
API. But leaving the high-level ecosystem of Java or other
languages also means to abandon many high-level abstractions
that are key for the productive and efficient development of
large-scale applications, including access to a large set of
libraries.

To reap the benefits of both high-level and low-level lan-
guages, developers using managed languages may write low-
level native C/C++ functions, that are invoked by the managed
runtime. In the case of Java, developers could use the Java
Native Interface (JNI) to invoke C functions with specific
naming conventions. However, this process of dividing the

application logic between two languages creates a significant
gap in the abstractions of the program, limits code reuse, and
impedes clear separation of concerns. Further, the native code
must be cross-compiled ahead of time, which is an error-prone
process that requires complicated pipelines to support different
operating systems and architectures, and thus directly affects
code maintenance and refactoring.

To address these problems, we propose a systematic and
automated approach that gives developers access to SIMD
instructions in the managed runtime, eliminating the need
to write low-level C/C++ code. Our methodology supports
the entire set of SIMD instructions in the form of embedded
domain-specific languages (eDSLs) and consists of two parts.
First, for each architecture, we automatically generate ISA-
specific eDSLs from the vendor’s XML specification of the
SIMD intrinsics. Second, we provide the developer with the
means to use the SIMD eDSL to develop application logic,
which automatically generates native code inside the runtime.
Instead of executing each SIMD intrinsic immediately when
invoked by the program, the eDSLs provide a staged or
deferred API, which accumulates intrinsic invocations along
with auxiliary scalar operations and control flow, batches
them together in a computation graph, and generates a native
kernel that executes them all at once, when requested by the
program. This makes it possible to interleave SIMD intrinsics
with the generic language constructs of the host language
without switching back and forth between native and managed
execution, enabling programmers to build both high-level and
low-level abstractions, while running SIMD kernels at full
speed.

This paper makes the following contributions:

1) We present the first systematic and automated approach
that supports the entire set of SIMD instructions, auto-
matically generated from the vendor specification, in a
managed high-level language. The approach is applica-
ble to other low-level instructions, provided support for
native code binding in the managed high-level language.

2) In doing so, we show how to use metaprogramming
techniques and runtime code generation to give back
low-level control to developers in an environment that
typically hides architecture-specific details.

3) We provide an end-to-end implementation of our ap-
proach within the HotSpot JVM, which provides access
to all Intel SIMD intrinsics from MMX to AVX-512.

4) We show how to use the SIMD eDSLs to build new
abstractions using host language constructs. Program-



mers can use the entire managed language as a form of
macro system to define new vectorized APIs with zero
overhead. As an example, we present a “virtual ISA” for
variable precision arithmetic.

5) We provide benchmarks that demonstrate significant
performance gains of explicit SIMD code versus code
auto-vectorized by the HotSpot JIT compiler.

Our work focuses on the JVM and Intel SIMD intrinsics
functions, but would equally apply to other platforms. For
the implementation of computation graphs and runtime code
generation, we use the LMS (Lightweight Modular Staging)
compiler framework [1].

II. BACKGROUND

We provide background on intrinsics functions, JVMs, and
the LMS metaprogramming framework that we use.

A. Intrinsics

Intrinsics are compiler-built-in functions that usually map
into a single or a small number of assembly instructions. Dur-
ing compilation, they are inlined to remove calling overhead.
This way they provide the programmer with assembly-like
functionality, without having to worry about register allocation
and instruction scheduling. SIMD intrinsics give access to data
parallel instructions in vector ISAs, such as NEON on ARM
processors, or the SSE and AVX families on Intel.

We focus on the x86 architecture and the associated SIMD
intrinsics that are available in modern C/C++ compilers, such
as GCC, Clang/LLVM, and Intel ICC. Specifically, these
include the following ISAs:
• MMX - operating on 64-bit wide registers; provides integer

operations only.
• SSE / SSE2 / SSE3 / SSSE3 / SSE4.1 / SSE4.2 -

operating on 128-bit wide registers; provides integer, 32-
bit, and 64-bit floating point operations, string operations
and cache and memory management operations.

• AVX / AVX2 - ISAs that expand the SSE operations to
256-bit wide registers and provide extra operations for
manipulating non-contiguous memory locations.

• FMA - an extension to SSE and AVX ISAs to provide
fused multiply add operations.

• AVX-512 - extends AVX to operate on 512-bit registers
and consists of multiple parts called F / BW / CD / DQ /
ER / IFMA52 / PF / VBMI / VL.

• KNC - the first production version of Intel’s Many Inte-
grated Core (MIC) architecture that provides operations
on 512-bit registers.

Additionally, we also include:
• SVML - an intrinsics short vector math library, built on

top of the ISAs mentioned above.
• Sets of smaller ISA extensions: ADX / AES / BMI1 /
BMI2 / CLFLUSHOPT / CLWB / FP16C / FSGSBASE
/ FXSR / INVPCID / LZCNT / MONITOR / MPX /
PCLMULQDQ / POPCNT / PREFETCHWT1 / RDPID /
RDRAND / RDSEED / RDTSCP / RTM / SHA / TSC /
XSAVE / XSAVEC / XSAVEOPT / XSS

These ISAs yield a large number of associated intrinsics:
arithmetics operations on both floating point and integer
numbers, intrinsics that operate with logical and bitwise oper-
ations, statistical and cryptographic operations, comparison,
string operations and many more. Table Ia gives a rough
classification of the different classes of intrinsics. To ease the
life of the developers, Intel provides an interactive tool called
Intel Intrinsics Guide [2] where each available intrinsics is
listed, including a detailed description of the underlying ISA
instruction. Table Ib shows the number of available intrinsics:
5912 in total (of which 338 are shared between AVX-512 and
KNC), classified into 24 groups.

B. Java Virtual Machines

There are many active implementations of the JVM in-
cluding the open source IBM V9 [3], Jikes RVM [4], Max-
ine [5], JRockit [6], and the proprietary SAP JVM [7], CEE-
J [8], JamaicaVM [9]. HotSpot remains the primary reference
JVM implementation that is used by both Oracle Java and
OpenJDK. Each of the JVM implementations provides support
for Java Standard Edition or Micro Edition, tailored for a
particular need: either a particular target machine or mi-
croarchitecture, embedded systems, operating system, provides
additional garbage collector, resource control or parallelism
model. However, none of the active JVM implementation
provides any support for explicit vectorization nor intrinsics,
nor permits inlining of assembly code directly in the Java
source due to portability specifications.

The HotSpot JVM, which is the focus of this study, provides
JIT compilation of Java bytecode as a black box. The devel-
oper has no control over, nor receives any feedback on the
compilation phases except through coarse-grained command-
line and debug options [10]. There are two flavors of the
VM: a client mode focused on latency, and a server mode
tuned for throughput. We only focus on the Server VM, as it
is tuned to maximize peak operating speed. The Server VM
offers a tiered compilation of bytecode using the C1 and C2
compilers. C1 is a fast, lightly optimizing bytecode compiler,
while C2 performs more aggressive optimizations. When JVM
applications are started, the HotSpot VM starts interpreting
bytecode. It detects computation-intensive hot spots in the
code via profiling, and proceeds to compile the bytecode of
frequently used functions with C1. Once further thresholds
are reached, functions may be compiled using C2. C2 sup-
ports autovectorization, using Superword Level Parallelism
(SLP) [11]. SLP detects groups of isomorphic instructions
and replaces them with SIMD instructions, which results in
a lightweight vectorization. The SLP approach is limited and
cannot optimize across loop iterations, nor can it detect idioms
such as reductions.

C. Lightweight Modular Staging

Lightweight Modular Staging (LMS) [1], [12] is a frame-
work for runtime code generation and for building compilers
for embedded DSLs in Scala. LMS makes pervasive use of op-
erator overloading to make code generation blend in with nor-



TABLE I: Simplified classification of intrinsics (a) and instruction count (b) of the x86 SIMD Intrinsics set.

Arithmetics Shuffles Statistics Loads

_mm256_add_pd _mm256_permutevar_pd _mm_avg_epu8 _mm_i32gather_epi32
_mm256_hadd_ps _mm256_shufflehi_epi16 _mm256_cdfnorm_pd _mm256_broadcast_ps
. . . . . . . . . . . .

Compare String Logical Stores

_mm_cmp_epi16_mask _mm_cmpestrm _mm256_or_pd _mm512_storenrngo_pd
_mm_cmpeq_epi8 _mm_cmpistrz _mm256_andnot_pd _mm_store_pd1
. . . . . . . . . . . .

Random Bitwise Crypto Conversion

_rdrand16_step _mm256_bslli_epi128 _mm_aesdec_si128 _mm256_castps_pd
_rdseed64_step _mm512_rol_epi32 _mm_sha1msg1_epu32 _mm256_cvtps_epi32
. . . . . . . . . . . .

(a)

ISA Count

MMX 124
SSE 154
SSE2 236
SSE3 11
SSSE3 32
SSE41 61
SSE42 19
AVX 188
AVX2 191
AVX-512 3857
FMA 32
KNC 601
SVML 406

(b)

TABLE II: Type mappings between JVM and C/C++ types.

JVM Types ↔ C/C++ Types

Float ↔ float Char ↔ int16_t
Double ↔ double Boolean ↔ bool
Byte ↔ int8_t UByte ↔ uint8_t
Short ↔ int16_t UShort ↔ uint16_t
Int ↔ int32_t UInt ↔ uint32_t
Long ↔ int64_t ULong ↔ uint64_t

mal programming. The core abstraction is a type constructor
Rep[T] that marks code expressions. For example, executing
a + b where a and b are two Rep[Int] expressions will
create a program expression that represents the addition a’ +
b’, where a’ and b’ are the program expressions a and b
evaluate to. This form of operator overloading is extended to
if/else expressions and other built-in constructs [13], [14].
The combined program expression can be unparsed to source
code, in this paper to C or LLVM code, compiled dynamically,
and loaded into the running JVM.

III. INTRINSICS IN THE JVM

In this section, we present our two-tier approach for making
the Intel SIMD intrinsics available in the JVM. First we
automatically generate SIMD eDSLs, each implemented as a
Scala class that corresponds to one of the 13 vector ISAs
in Figure Ib. Then, we show how to use these eDSLs to
generate high-performance SIMD code with high-level lan-
guage constructs inherited by the host language. We show
examples of end-user code in Scala, but any other JVM
language could be used. Before we start, we have to establish
a corresponding type system between the JVM and the SIMD
intrinsics functions to represent the SIMD vector types, that
is required for the generation of the eDSLs and their usage.

A. Type System for SIMD Intrinsics in the JVM

The JVM has no notion of SIMD vector types, thus we
build abstract classes to mark the type of DSL expressions
that represent SIMD intrinsics functions in LMS:

Rep[__m64] // MMX integer types
Rep[__m128] // SSE 4x32-bit float
Rep[__m128d] // SSE 2x64-bit float

Rep[__m128i] // SSE 2x64/4x32/8x16/16x8-bit integer
Rep[__m256] // AVX 8x32-bit float
Rep[__m256d] // AVX 4x64-bit float
Rep[__m256i] // AVX 4x64/84x32/16x16/32x8-bit integer
Rep[__m512] // AVX512 16x32-bit float
Rep[__m512d] // AVX512 8x64-bit float
Rep[__m512i] // AVX512 8x64/16x32/32x16/64x8-bit integer

SIMD intrinsics functions take primitive arguments that
correspond to low-level C/C++ primitive types. The primitive
types in the JVM exhibit a fixed width, and therefore a direct
mapping can be established with C/C++ primitives. Some
intrinsics however, require the use of unsigned types that are
not supported natively in the JVM:

unsigned int _mm_crc32_u16 (unsigned int, unsigned short)

To mitigate this problem, we use the Scala Unsigned [15]
package, which implements unsigned types and operations
on top of the signed types available in the JVM. Table II
shows the type mapping between the 12 primitives, which in
most cases is straight-forward, except for JVM Char that
maps to int16_t to support UTF-8. Arrays of primitive
types in the JVM and C/C++ code are isomorphic and both
represent continuous memory space of a certain primitive type.
Therefore Array[T] maps to a memory pointer T* in the
low-level SIMD intrinsics.

B. Automatic Generation of ISA-specific eDSLs

LMS provides a relatively simple interface to define eDSLs,
but adding more than 5000 functions by hand would be tedious
and error prone. Our approach generates the LMS eDSLs
automatically from the XML specification provided by the
Intel Intrinsics Guide; these are then packed as a jar file that
is later published in the Maven Central Repository [16] for
deployment. At the time of writing, we use the latest version
of the intrinsics specifications stored as data-3.3.16.xml
file, and build the generator such that it anticipates future
extensions in the specifications. Figure 1 shows a high-level
overview of the generation process, which we explain step-
by-step next.

a) Parse XML intrinsics specification.: The first step in
the generation process extracts the information from the XML
file. As shown in an example (Figure 2), for each intrinsics, the
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Fig. 1: Generating SIMD intrinsics eDSLs from vendor spec-
ification.

<intrinsic rettype=’__m256d’ name=’_mm256_add_pd’>
<type>Floating Point</type>
<CPUID>AVX</CPUID>
<category>Arithmetic</category>
<parameter varname=’a’ type=’__m256d’/>
<parameter varname=’b’ type=’__m256d’/>
<description>
Add packed double-precision (64-bit)
floating-point elements in "a" and "b",
and store the results in "dst".

</description>
<operation>
FOR j := 0 to 3

i := j*64
dst[i+63:i] := a[i+63:i] + b[i+63:i]

ENDFOR
dst[MAX:256] := 0

</operation>
<instruction name=’vaddpd’ form=’ymm, ymm, ymm’/>
<header>immintrin.h</header>

</intrinsic>

Fig. 2: XML specification of the _mm256_add_pd intrinsic.

XML file contains a name that defines the intrinsics function,
return type, ordered list of each argument of the function with
the corresponding type, CPUID parameter, that correspond to
the ISA set, and a category parameter.

b) Generate ISA-specific DSL in LMS.: For each intrinsic
function we implement four building blocks that define the
eDSL. These are represented in terms of implementation
classes provided by the LMS framework. The classes Def[T]
and Exp[T] together define a computation graph. Subclasses
of Def[T] implement graph nodes that represent individual
computations, e.g., Plus(a,b). Here, a and b are values
of type Exp[T]: either constants Const(.) or symbols
Sym(id) that refer to other graph nodes through a numeric

index id. The four necessary building blocks are as follows:
1) Definition of the intrinsic function represented as a

subclass of Def[T].
2) Implicit conversion from expression Exp[T] to defini-

tion Def[T], looking up a computation node given a
symbolic reference.

3) Mirroring function that converts a Def[T] into expres-
sion Exp[T], potentially applying a transformation.

4) Unparsing routine that converts each Def[T] into
C/C++ string.

To complete the first part, we define
IntrinsicsDef[T], an abstract class that each intrinsics
definition will inherit:

abstract class IntrinsicsDef[T:Manifest] extends Def[T] {
val category: List[IntrinsicsCategory]
val intrinsicType: List[IntrinsicsType]
val performance: Map[MicroArchType, Performance]
val header: String

}

Then for each intrinsic function, we define a Scala case
class that corresponds to the intrinsics function’s name, its
input arguments and return type. Each case class contains the
category, the type of the intrinsics and performance informa-
tions when available. Additionally, we also include the header
where the C/C++ intrinsics is defined:

case class MM256_ADD_PD(
a: Exp[__m256d], b: Exp[__m256d]

) extends IntrinsicsDef[__m256d] {
val category = List(Arithmetic)
val intrinsicType = List(FloatingPoint)
val performance = Map.empty[MicroArchType, Performance]
val header = "immintrin.h"

}

With the current definition we allow a particular intrinsics
to pertain to several categories. The header information gives
us the control to include the correct header when unparsing
the code to C/C++ code. Performance information is included
but is not used in the staging process.

Next we generate Scala code for the implicit conversion
from intrinsics expressions to definitions. This routine is essen-
tial in LMS, as it provides automatic conversion of the staged
code into static single assignment (SSA) form. In most cases
it is sufficient to rely on the Scala compiler to automatically
perform the implicit conversion:

def _mm256_add_pd(a: Exp[__m256d], b: Exp[__m256d])
: Exp[__m256d] = MM256_ADD_PD(a, b)

The LMS framework supports DSL transformations by
substitution. Once a substitution is defined, LMS creates new
definitions. However, when no substitution is available, a
definition has to be converted to an expression through a
routine of mirroring that converts a Def[T] back to Exp[T],
potentially creating a new definitions for subexpressions as
part of the transformation:

override def mirror[A:Typ](e: Def[A], f: Transformer)
(implicit pos: SourceContext): Exp[A] = (e match {
case MM256_ADD_PD (a, b) =>
_mm256_add_pd(f(a), f(b))

case MM256_ADD_PS (a, b) =>
_mm256_add_ps(f(a), f(b))



// ... a lot more patterns to match
case _ => super.mirror(e, f)

}

Once code is generated for all these routines and for each
intrinsic, the final step is to generate code to perform the un-
parsing of the DSL into C code. The unparsing routine is done
similarly to the mirroring routine, by pattern matching each
DSL definition to produce the corresponding C expression:

override def emitNode(s:Sym[Any], r:Def[Any]) = r match {
case iDef@MM256_ADD_PD(a, b) =>
headers += iDef.header
emitValDef(sym, s"_mm256_add_pd(${a}, ${b})")

// ... a lot more patterns to match
case _ => super.emitNode(sym, rhs)

}

c) Infer intrinsic mutability: As mentioned before, when
code is generated for the implicit conversion of an intrinsics
expression to the intrinsics definition, we can rely on the Scala
compiler to match the correct implicit method. This works
correctly for immutable expressions, but not all intrinsics are
immutable. For example, each intrinsics that loads and stores
from/to memory creates effects that have to be handled by
LMS. The semantic of these effects is essential in scheduling
the DSL.

To resolve this problem, we use the category information of
each intrinsics (see Figure 2), and implement a conservative
heuristic to generate the effects:
• Each time an intrinsics is discovered with a load category,

we generate a read effect on each argument that is a
memory location.

• Each time an intrinsics is discovered with a store cate-
gory, we generate a write effect on each argument that is
a memory location.

For example, an AVX load of 4 doubles has the form of:

def _mm256_load_pd[A[_], U:Integral](
mem_addr: Exp[A[Double]], mem_addrOffset: Exp[U]

)(implicit cont: Container[A]): Exp[__m256d] = {
cont.read(mem_addr)
(MM256_LOAD_PD(mem_addr, mem_addrOffset)

(implicitly[Integral[U]], cont))
}

The heuristics is invoked on each intrinsics that performs
loads, stores, maskstores, maskloads, gather, scatters and other
intrinsics that perform memory-related operations.

d) Split each ISA specific DSL into subclasses: The JVM
has a hard limit of 64KB on the size of each method, which is
an obstacle in generating the unparsing and mirroring routines
for large ISA, such as AVX-512 or KNC. To avoid this
obstacle, and still keep the LMS design pattern, we decided
to split the ISA specific DSLs into subclasses that inherit each
other.

C. Developing Explicitly Vectorized Code in the JVM Using
SIMD eDSLs

Figure 3 gives a high-level overview of how to use explicit
vectorization in the JVM. The process consists of two parts:
compile-time tasks, done by the high-performance code devel-
oper, and runtime tasks that are done automatically by LMS
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Fig. 3: Developing explicit vectorized code in the JVM using
SIMD eDSLs.

and our compiler pipeline. Specifically, the compile-time tasks
of the developer comprise four steps:

1) Implement a native function placeholder that will repre-
sent the vectorized code.

2) Create a DSL instance by instantiating one or mixing
several ISA-specific eDSLs.

3) Implement the SIMD logic as a staged function.
4) Call the provided compile routine to generate, compile

and link the code in the JVM.
After the four steps are completed, and the JVM pro-

gram is started, the compiler pipeline is invoked with the
compile routine. This will perform system inspection, search
for available compilers and opportunistically pick the optimal
compiler available on the system. In particular, it will attempt
to find icc, gcc or llvm/clang. After a compiler is found,
the runtime will determine the target CPU, as well as the
underlying micro-architecture to derive available ISAs. This
allows us to have full control over the system, as well as to be
able to pick the best mix of compiler flags for each compiler.

Once this process is completed, the user-defined staged
function is executed, which assembles a computation graph
of SIMD instructions. From this computation graph, LMS
generates vectorized C code. This code is then automatically
compiled as a dynamic library with the set of derived compiler
flags, and linked back into the JVM. To link the native code
into the JVM, JNI requires the C functions header to contain
the Java_ prefix, followed by package name, class name and



import ch.ethz.acl.commons.cir.IntrinsicsIR
import com.github.dwickern.macros.NameOf._

class NSaxpy {

// Step 1: Placeholder for the SAXPY native function
@native def apply (
a : Array[Float],
b : Array[Float],
scalar : Float,
n : Int

): Unit

// Step 2: DSL instance of the intrinsics
val cIR = new IntrinsicsIR
import cIR._

// Step 3: Staged SAXPY function using AVX + FMA
def saxpy_staged(
a_imm : Rep[Array[Float]],
b : Rep[Array[Float]],
scalar : Rep[Float],
n : Rep[Int]

): Rep[Unit] = { import ImplicitLift._
// make array ‘a‘ mutable
val a_sym = a_imm.asInstanceOf[Sym[Array[Float]]]
val a = reflectMutableSym(a_sym)
// start with the computation
val n0 = (n >> 3) << 3
val vec_s = _mm256_set1_ps(scalar)
forloop(0, n0, fresh[Int], 8, (i : Rep[Int]) => {

val vec_a = _mm256_loadu_ps(a, i)
val vec_b = _mm256_loadu_ps(b, i)
val res = _mm256_fmadd_ps(vec_b, vec_s, vec_a)
_mm256_storeu_ps(a, res, i)

})
forloop(n0, n, fresh[Int], 1, (i : Rep[Int]) => {

a(i) = a(i) + b(i) * scalar
})

}

// Step 4: generate the saxpy function,
// compile it and link it to the JVM
compile(saxpy_staged _, this, nameOf(apply _))

}

Fig. 4: A complete implementation of the BLAS 1 routine
SAXPY in the JVM using AVX and FMA SIMD intrinsics.

name of the native function. The compile routine automates
this process using JVM reflection and some lightweight use
of Scala macros. By this automation, we ensure the interoper-
ability between the native function and the staged function,
creating code robust to modifications and refactoring and
eliminate the need for the developer to recompile the native
code each time major code revision are performed on the low-
level code or the class container.

Figure 4 illustrates a complete and self-contained imple-
mentation of a BLAS 1 routine called SAXPY [17], which
computes y = y + αx for given vectors x, y and scalar α.
The expression forloop(...) creates a staged loop in the
LMS computation graph.

D. Evaluation

To assess the viability of our approach we consider two
ubiquitous kernel functions: the aforementioned SAXPY and
matrix multiplication.

a) Experimental setup.: We perform the tests on a
Haswell enabled processor Intel Xeon CPU E3-1285L v3
3.10GHz with 32GB of RAM, running Debian GNU/Linux

1 // take 8 __m256 vector types, transpose their
2 // values, returning 8 __m256 vectors.
3 def transpose(row: Seq[Exp[__m256]]) = {
4 val __tt = row.grouped(2).toSeq.flatMap({
5 case Seq(a, b) => Seq (
6 _mm256_unpacklo_ps(a, b),
7 _mm256_unpackhi_ps(a, b)
8 )
9 }).grouped(4).toSeq.flatMap({

10 case Seq(a, b, c, d) => Seq(
11 _mm256_shuffle_ps(a, c, 68),
12 _mm256_shuffle_ps(a, c, 238),
13 _mm256_shuffle_ps(b, d, 68),
14 _mm256_shuffle_ps(b, d, 238)
15 )
16 })
17 val zip = __tt.take(4) zip __tt.drop(4)
18 val f = _mm256_permute2f128_ps _
19 zip.map({ case (a, b) => f(a, b, 0x20) }) ++
20 zip.map({ case (a, b) => f(a, b, 0x31) })
21 }
22 // Perform Matrix-Matrix-Multiplication
23 def staged_mmm_blocked (
24 a : Rep[Array[Float]],
25 b : Rep[Array[Float]],
26 c_imm : Rep[Array[Float]],
27 n : Rep[Int] // assume n == 8k
28 ): Rep[Unit] = {
29 val c_sym = c_imm.asInstanceOf[Sym[Array[Float]]]
30 val c = reflectMutableSym(c_sym)
31 forloop(0, n, fresh[Int], 8, (kk: Exp[Int]) => {
32 forloop(0, n, fresh[Int], 8, (jj: Exp[Int]) => {
33 // Load the block of matrix B and transpose it
34 val blockB = transpose((0 to 7).map { i =>
35 _mm256_loadu_ps(b, (kk + i) * n + jj)
36 })
37 // Multiply all the vectors of a of the
38 // corresponding block column with the running
39 // block and store the result in matrix C
40 forloop(0, n, fresh[Int], 1, (i: Exp[Int]) => {
41 val rowA = _mm256_loadu_ps(a, i * n + kk)
42 val mulAB = transpose(
43 blockB.map(_mm256_mul_ps(rowA, _))
44 )
45 def f(l: Seq[Exp[__m256]]): Exp[__m256] =
46 l.size match {
47 case 1 => l.head
48 case s =>
49 val lhs = f(l.take(s/2))
50 val rhs = f(l.drop(s/2))
51 _mm256_add_ps(lhs, rhs)
52 }
53 val rowC = _mm256_loadu_ps(c, i * n + jj)
54 val accC = _mm256_add_ps(f(mulAB), rowC)
55 _mm256_storeu_ps(c, accC, i * n + jj)
56 })
57 })
58 })
59 }

Fig. 5: Implementation of MMM in the JVM using AVX
intrinsics

8 (jessie), kernel 3.16.43-2+deb8u3. The available compilers
are gcc 4.9.2-10 and Intel icc 17.0.0. The installed JVM
is HotSpot 64-Bit Server 25.144-b01, supporting Java 1.8. To
avoid the effects of frequency scaling and resource sharing
on the measurements, Turbo Boost and Hyper-Threading are
disabled.

We use ScalaMeter [18] to perform the benchmarks. To ob-
tain precise results, we select a pre-configured benchmark that
forks a new JVM virtual machine and performs measurements
inside the clean instance. The new instance has a compilation
threshold of 100 (-XX:CompileThreshold=100) and we
perform at least 100 warm-up runs on all test cases to trigger
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Fig. 6: Performance analysis: Java implementation vs LMS intrinsics generated code.

the JIT compiler. Each test case is performed on a warm cache.
Tests are repeated 30 times, and the median of the runtime is
taken. We show the results as performance, measured in flops
per cycle.

To inspect the JIT compilation of the HotSpot
JVM, we use -XX:UnlockDiagnosticVMOptions
that unlocks the diagnostic JVM options and
-XX:CompileCommand=print to output the generated
assembly. In all test cases we observe the full-tiered
compilation starting from the C1 compiler to the last phase of
the C2 compiler. For a fair comparison between the JVM and
our generated intrinsics code, we consider the C2 compiled
version of the bytecode only, excluding the JIT warm-up time
and the LMS generation overhead.

b) SAXPY: We compare the generated SAXPY vector
code, shown in Figure 4, against an equivalent Java imple-
mentation:

public class JSaxpy {
public void apply(float[] a, float[] b, float s, int n){
for (int i = 0; i < n; i += 1)

a[i] += b[i] * s;
}

}

Figure 6a shows the performance comparison. First we note
the similarity in performance, which is not surprising since
SAXPY has low operational intensity and the simplicity of the
code enables efficient autovectorization. Indeed, the assembly
diagnostics confirms this but reveals that the JVM only uses
SSE whereas our staged version uses AVX and FMA, which
explains the better performance for larger sizes.

For small sizes that are L1 cache resident the Java imple-
mentation does better. This is because JNI methods are not
inlined and incur additional cost to be invoked.

c) Matrix-matrix multiplication (MMM).: For the second
benchmark we chose MMM, which has a high operational
intensity and is known to benefit from various optimizations
such as blocking and vectorization [19]. We consider three
versions. The first is a standard Java implementation of a triple

MMM loop. The two other versions are a blocked version of
MMM, with block size of 8, the first implemented in Java,
and the second implemented using AVX intrinsics in Scala.
For simplicity, we assume that the matrix has size n = 8k,
and provide the implementation in Figure 5.

Our Scala implementation uses the SIMD intrinsics with
high level constructs of the Scala language, including pattern
matching (lines 5, 10, 19, 20, etc), lambdas (lines 4, 10, 34),
Scala collections (lines 4, 34, etc), closures (line 45) and others
that are not available in low-level C code. Once LMS removes
the abstraction overhead, the MMM function results in a high-
performance implementation. The performance comparison in
Figure 6b shows that the use of explicit vectorization through
SIMD intrinsics can offer improvements up to 5x over the
blocked Java implementation, and over 7.8x over the baseline
triple loop implementation.

The assembly analysis shows that the C2 compiler will
unroll the hot loops in both Java versions, but does generate
SIMD instructions, which explains the low performance.

d) Automatic SIMD eDSL generator.: The predecessor
of the Intel Intrinsics Guide web application was a Java
application sharing the same name. The older versions of both
Java and the web application contained older version of the
intrinsics specifications, e.g., without AVX-512. However, In-
tel does not offer these versions, and continuously updates the
XML specifications, improving the description / performance
of each intrinsic function.

Using tools such as the Wayback Machine, a digital archive
that mirrors web-site states at a given date, we were able to
salvage older, pre-captured iterations of the intrinsics speci-
fications, shown in Table III. Then we instructed our eDSL
generator to re-generate each ISA-specific eDSL.

Our results show that our eDSL generator is robust towards
minor changes on the XML specifications, being able to
retrospectively generate eDSLs for recent years. We believe
that if Intel uses the same XML schema for new releases, our
generator should be robust to new ISA updates, as long as the



TABLE III: Intel Intrinsics Guide XML specifications.

Specification Date Specification Date

data-3.2.2.xml 03.09.2014 data-3.3.14.xml 12.01.2016
data-3.3.1.xml 17.10.2014 data-3.3.16.xml 26.01.2016
data-3.3.11.xml 27.07.2015 data-3.4.xml 07.09.2017

new ISA has similar properties than its predecessor.

E. Limitations

Our approach provides low-level control for performance
optimizations to the Java developer but comes at a price. We
discuss a number of technical issues that would be good to
resolve to further improve ease-of-use and maintainability.

Currently, there is no mechanism to ensure the isomor-
phism between the native function placeholder and the staged
function. As a result, it is the responsibility of the developer
to define this isomorphic relation upon compile time. The
current use of Scala macros makes the code robust in terms of
refactoring and modifications, which is quite convenient com-
pared to manually maintaining isomorphism between native
C/C++ and JVM code. A more diligent use of Scala macros
could potentially resolve this problem and ensure complete
isomorphic binding of JNI and staged functions.

LMS does not provide any mechanism to deal with ex-
ceptions such as segfaults from generated code. Therefore it
is the responsibility of the developer to write valid SIMD
code. LMS is also not optimized for fast code generation,
which might result in an overhead surpassing the HotSpot
interpretation speed when used to generate functions that are
computationally light.

Another limitation is a consequence of the complex memory
model in the HotSpot JVM. Once arrays are used in the native
code, GetPrimitiveArrayCritical must be invoked
to obtain the memory space of the array. Depending on the
state of the garbage collector (GC), the array might end up on
different segments on the heap, which could result in a copy
once the native code tries to access the memory space, or the
JVM could decide to temporary disable the GC. Although we
did not experience an array copy in any test case performed,
we believe that the use of LMS intrinsics is best suited for
compute-bound problems, where the copy overhead can be
leveraged by the fast runtime of SIMD instructions upon each
JNI invocation. Some of the issues with JVM arrays can
be avoided by using Java NIO buffers or off-heap memory
allocated with the sun.misc.Unsafe package.

IV. BUILD YOUR OWN VIRTUAL ISA

In the previous section, we demonstrated the use of SIMD
intrinsics in developing high performance code, based on
high-level constructs of the Scala language. However, with
the use of metaprogramming and staging provided by LMS,
we can also use the SIMD intrinsics to build new low-level
abstractions and provide a functionality similar to the SVML
short vector math library that is typically implemented by low-
level C/C++ compilers. As an example, we build abstractions

for low-precision arithmetic and, in particular, building blocks
for the stochastic gradient descent (SGD) algorithm.

SGD is currently among the most popular algorithms in
machine learning, used for training neural networks [20], [21].
It consists of two main building blocks: a dot-product operator
and a scale-and-add operator. The use of low precision is an
important optimization in SGD for deep learning as it reduces
both computation time and data movement for increased
performance and efficiency [22].

In this section we build a virtual variable-precision ISA
that implements the dot product operator, operating on arrays
of 32, 16, 8 and 4-bit precision. For 32 and 16-bit we use
floating point, which is natively supported by the hardware;
for the lower precision formats, we use quantized arrays [22].
Quantization is a lossy compression technique that maps
continuous values to a finite set of fixed bit-width numbers.
For a given vector v of size n and precision of b bits, we first
derive a factor sv that scales the vector elements vi into the
representable range:

sv =
2b−1 − 1

maxi∈[1,n] |vi|
.

The scaled vi are then quantized stochastically:

vi → bvi · sv + µc

where µ is drawn uniformly from the interval (0, 1). With this,
a quantized array consists of one scaling factor and an array
of quantized b-bit values.

A. Implementation
a) 32-bit.: For the 32-bit version, we use the built-in

hardware support for floating point. In Java, we can only
express scalar (non-vectorized) code to multiply / add values;
using our LMS intrinsics we have access to AVX2 and FMA.

b) 16-bit.: For the 16-bit version we use a half-precision
floating point format, available as a separate ISA extension
called FP16C that provides instructions to convert a 32-bit
float into 16-bit float, and vice-versa. We use these instructions
to load and store the data in 16-bit format, and perform
computations on the 32-bit format. In Java, there is no access
to half-precision floating point; thus, instead, we quantize the
values as shown before to type short.

c) 8-bit.: We base our 8-bit version on Buckwild! [23].
Both LMS intrinsics and the Java implementation operate on
quantized values, using a scaling factor and an array of type
byte to hold the 8-bit two’s complements values.

d) 4-bit.: We base this version on the analysis in the
ZipML framework [24]. The values are not two’s complement,
but sign-bit followed by the base in binary format, and stored
as pairs inside the 8-bit values of a byte array.

e) Scala implementation.: In Scala, we can abstract the
precision as a number that reflects the bit length of the format,
and provide two virtual intrinsics functions:
int dot_ps_step (int bits);
__m256 dot_ps (int bits, void* x, void* y);
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dot_ps_step returns the number of elements processed
by dot_ps for a given bit length. For example, in the case
of 32, 16 and 8-bit versions, 32 elements are processed at a
time and in the case of the 4-bit, 128 elements at a time.
dot_ps takes the bit length and two memory addresses.
According to the bit length, it will select the corresponding
bit format, load from the array, compute the dot product
and return the result. Assuming the arrays are padded with
their corresponding dot_ps_step value, the two intrinsics
allows us to easily build for loops with increment defined
by the dot_ps_step, such that dot_ps is invoked at
each iteration. Finally, the resulting dot product with variable
precision is a sum reduction of 8 floats stored in the acc
variable:

def dot_AVX2[T] (bits: Rep[Int],
a: Rep[Array[T]], b: Rep[Array[T]], len: Rep[Int]

): Rep[Float] = {
var acc = _mm256_setzero_ps();
val increment = dot_ps_step(bits);
forloop(0, len, fresh[Int], increment, i => {
acc += dot_ps(bits, a + i, b + i)

})
reduce_sum(acc)

}

In the 16-bit version, we use the _mm256_cvtph_ps
intrinsics to convert the half-precision format into 32-bit
floating point number. In the 8-bit and 4-bit version we benefit
from _mm256_sign_epi8 and _mm256_abs_epi8
combined with _mm256_maddubs_epi16 and
_mm256_madd_epi16 to perform fast additions and
multiplications, that result in a 32-bit values, without
spending a single instruction to perform casts. Additionally,
in the 4-bit version, we benefit from intrinsics to perform
wide range of bit-wise manipulations to extract the base and
the sign of the 4-bit values. Note that this version of dot
product is implemented such that existence of AVX2 and
FP16C is assumed. It is possible to abstract the use of the
dot operator to an ISA-agnostic implementation as shown in
[25], and performance could be improved using methods as
prefetching, particularly in the 8-bit [23] and 4-bit version,
however we did not apply these techniques.

f) Java implementation.: We implement each case as a
separate class corresponding to the 32, 16, 8 and 4 bit versions.
The simplest dot product is the 32-bit version. Java does not
support bit manipulation or numerical expression on types
lower than 32-bits. Instead, 16-bit and 8-bit types are promoted
to 32-bit integers before operations are performed. To provide
a fair comparison, we write the 16, 8 and 4-bit versions of the
dot product such that we block the loop, and accumulate into
integer values, avoiding unnecessary type promotion as much
as possible.

B. Evaluation

We use the same experimental setup as in section III-D. For
each benchmark, we use the identical flop (or op for 8 and 4
bit) count of 2n for the dot-product, where n is the size of the
quantized array.

Figure 7 shows the obtained results. Our 4-bit implementa-
tion outperforms HotSpot by a factor of up to 40x, the 8-bit
up to 9x, the 16-bit up to 4.8x, and the 32-bit version up
to 5.4x. There are several reasons for the speedups obtained
with the use of SIMD intrinsics. In the 32-bit case, we see
the limitation of SLP to detect and optimize reductions. In the
16-bit, there is no way to obtain access in Java to an ISA such
as FP16C. And in the 8-bit and 4-bit case, Java is severely
outperformed since it does type promotion when dealing with
integers. However, the largest speedup of 40x in the 4-bit case
is due to the domain knowledge used for the implementing
the dot product, that the HotSpot compiler cannot synthesize
with a lightweight autovectorization such as SLP.

V. RELATED WORK

We review different lines of related work.
a) Explicit vectorization in the JVM.: The first approach

to expose data parallelism was the implementation of the Java
Vectorization Interface (JVI) as part of the Jitrino JIT compiler
[26]. JVI is designed as a an abstract vector interface that
provides set of methods as vector operators. This methods
are later compiled to different vector instructions, such as
SSE and AVX. The approach offers competitive results in



some case, but is limited in the SIMD instructions it supports
and subsequent iterations of post-AVX ISAs. Similarly to JVI,
Oracle has ongoing research developing cross-platform APIs
that can leverage SIMD instructions. Implemented as part of
an experimental JVM called Panama [27], SIMD instructions
are used in immutable vector types, parameterized by element
type and size. Similarly to JVI, Panama also suffers from
limited support of vector ISAs, and requires a specific JVM.
Both approaches abstract SIMD instructions, which limits
the ability of a developer to tune the code to a particular
microarchitecture.

b) Autovectorization in the JVM.: Initially introduced in
the Jikes RVM [4], the HotSpot JVM uses SLP [11] based
autovectorization. SLP is limited and is only able to vectorize
basic blocks consisting of groups of isomorphic instructions,
generating SSE and AVX code. Partial support of FMA and
AVX-512 is only planned for Java 9 [27].

c) Support of low-level code in the JVM.: Sulong [28]
is a system to execute low-level languages such as C/C++,
Fortran, Ada, and Haskell in the JVM. Sulong is capable of
handling low-level languages that compile to LLVM, using
LLVM IR interpreter built on top of the Truffle frame-
work [29], running on the Graal VM. While this approach
can bring a support of low-level instructions in the JVM,
it does not support SIMD instructions, as Graal does not
provide sufficient analysis for vectorization. Furthermore, due
to interpretation, Sulong is shown to be outperformed by native
compilers such as gcc.

d) Automatic generation of DSLs in LMS.: DSLs have
been generated into LMS before. Yin-Yang [30] automatically
generates deep DSL embeddings from their shallow counter-
parts by reusing the core translation. Forge [31] generates
DSLs from a declarative specification. None of the approaches
have been challenged to generate DSLs of the scale imposed
by the large amount of SIMD intrinsics, nor were they
designed to automatically infer effects of mutability.

e) SIMD intrinsics in LMS.: A limited support of SIMD
instructions has been introduced while abstracting vectors
architectures [25]. This approach has been used in generating
libraries for high-performance code, and integration with the
JVM has not been demonstrated. On an even lower level, LMS
has been used to define domain-specific ISAs by generate
specialized hardware [32], [33].

VI. CONCLUSION

Our work shows how metaprogramming techniques can
be used to bridge the gap between high-level managed lan-
guages and the need to access low-level instructions in high
performance code development. Specifically, we showed how
to provide access to SIMD intrinsics in the HotSpot JVM,
thus eliminating the need to write C/C++ code. Two key
techniques underlie our approach. First is the use of embedded
DSLs to express intrinsics inside JVM languages such as
Scala. These are generated directly from the vendor XML
specification, which enables complete intrinsics support and
fast updates in the future. Second is the use of staging to

convert SIMD intrinsics interspersed with Scala code into
high-performant C kernels, which are then compiled and linked
via JNI. The challenge in our work is in the systematic
handling of large sets of functions, converting them into sets of
DSLs, automatically inferring their side effects, and creating
a compiler and code generation pipeline for convenient and
productive development. We show how the SIMD support in
JVM can be used to build powerful high-level and low-level
abstractions while offering significant, often manifold speedup
over the autovectorizing HotSpot JIT compiler.
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