
A Tiny Python Based High Performance
Backend Code Generator

Richard Veras and J. “Ram” Ramanujam

Louisiana State University, USA
rveras@lsu.edu, jxr@ece.lsu.edu

Abstract. Many performance critical domains such as Dense Linear Al-
gebra, Signal Processing, Structured Mesh Computation and Graph An-
alytics provide efficient libraries by building their operations in terms of
high performance computational kernels. It is this performance abstrac-
tion that allows these codes to be portable across a variety of hardware,
while insulating all but a handful of developers from the low-level de-
tails needed for implementing these kernels. However, developing these
kernels requires a monumental amount of effort, domain knowledge and
hardware knowledge because implementing a single kernel for one hard-
ware target involves the following: First, finding an efficient loop based
algorithm for the kernel. Second, realizing that kernel in terms of a mix
of Single Instruction Multiple Data (SIMD) instructions that can achieve
high throughput within the context of a loop. Third, scheduling those
instructions in order to maximize Instruction Level Parallelism. Fourth,
emitting the result code in a representation that preserve the instruction
selection and schedule. For every target platform this process is repeated.
The first step for kernel generation typically is problem specific and relies
heavily on the domain expert’s knowledge. The last three processes are
common across many domains and could be automated. While one could
use a conventional compiler for scheduling and code emission, in practice
this approach typically falls short of what is achieved by hand implemen-
tation in assembly code or produced by an in-house backend code genera-
tor. Neither of these approaches are optimal, as programming in assembly
involves substantial effort and expertise in order to produce unportable
code, and a backend code generator requires maintaining a large infras-
tructure base for every hardware target. In this work we present the High
Performance Backend Code Generator (HPBCG), a framework for gen-
erating scheduled portable SIMD code for computational kernels. This
framework takes a user’s kernel implemented in a Python based represen-
tation and emits portable scheduled SIMD code. The scheduler is based
on the OASIC model and produces a software pipeline implementation
of the kernel code in C. The resulting C code, which we call Wrapped
Schedulable (WS) Macro Instructions, maintains the instruction sched-
ule in any ANSI C compiler. Further these WS Macro Instructions can
target any Instruction Set Architecture (ISA) through the inclusion of
an architecture specific header file without modification of the gener-
ated kernel code. In ongoing work, we are investigating extending this
concept of architecture specific header files to Cuda, OpenCL and In-
tel ICPC representations which would allow us to generate kernel code
for a wide variety of platforms from the same backend code generator.
We will demonstrate how our framework works in the context of kernel
code generators. In addition, we will show the effectiveness of HPBCG
by evaluating the performance of the generated kernel code for a variety
Linear Algebra, Graph Analytic and Machine Learning operations. In
particular our performance for Matrix Multiplication kernels approach
the performance of hand written assembly kernels.


