
Parallelism in Linnea

Henrik Barthels
AICES, RWTH Aachen University

barthels@aices.rwth-aachen.de

Paolo Bientinesi
AICES, RWTH Aachen University

pauldj@aices.rwth-aachen.de

Abstract
Linnea is an experimental tool for the automatic translation
of linear algebra expressions to efficient programs consist-
ing of a sequence of calls to BLAS and LAPACK kernels.
Linnea generates programs by constructing a search graph,
where each path in the graph represents one program. We
introduce two problems related to parallelism that arise in
Linnea. Those problems consist in 1) parallelizing the con-
struction of the search graph and 2) generating parallel pro-
grams.

Keywords linear algebra, code generation, parallelism

1. Code Generation for Linear Algebra
Linear algebra problems appear in fields as diverse as com-
putational biology, signal processing, communication tech-
nology, finite element methods and control theory. The eval-
uation of linear algebra expressions is a central part of both
languages for scientific computing such as Julia and Matlab,
and libraries such as Eigen, Blaze, and NumPy. However,
the existing strategies are still rather primitive.

At present, the only way to achieve high performance
is by handcoding algorithms using libraries such as BLAS
[2] and LAPACK [1], a task that requires extensive knowl-
edge in linear algebra, numerical linear algebra and high-
performance computing.

We are developing Linnea, a tool that automates the trans-
lation of the mathematical description of a linear algebra
problem to an efficient sequence of calls to library kernels.
The main idea of Linnea is to construct a search graph that
represents a large number of programs, taking into account
knowledge about linear algebra. The algebraic nature of the
domain is used to reduce the size of the search graph, with-
out reducing the size of the search space that is explored.
Experiments show that 1) the code generated by Linnea out-
performs standard linear algebra languages and libraries, and
2) in contrast to the development time of human experts, the
generation takes only few seconds.

2. Parallel Code Generation
Linnea generates a large number of possible algorithms by
constructing a search graph. The nodes represent the current
state of the computation, the edges are annotated with the

kernel calls to get from one state to another. This graph is a
directed acyclic graph with one source node and one or more
sink nodes. Each path in the graph from the source to a sink
node represents one algorithm.

The construction of the graph starts with the source node.
In every step of the generation, new successors are added
to existing nodes. Since there are usually many different
ways to get to the same state of the computation, there is
redundancy in the graph. To reduce the size of the graph
and speed up the derivation, in every step nodes are merged.
Experiments indicate that merging nodes can decrease the
size of the search graph by one to two orders of magnitude,
resulting in a similar speedup of the derivation.

For problems with sufficiently large matrices, the cost of
the derivation is always amortized by the increased perfor-
mance of the generated code. To ensure that the code genera-
tion also pays off for smaller problems, it would be desirable
to parallelize the construction of the search graph. While the
generation of new successors for existing nodes can be done
in parallel, merging nodes would require synchronization be-
tween all threads. Furthermore, the time to generate succes-
sors for a node is difficult to predict and may vary signifi-
cantly. To reduce synchronization between threads, one can
look at the tradeoff between merging nodes and performing
redundant derivations.

3. Generation of Parallel Code
The second form in which parallelism plays a role in Lin-
nea is the the generation of parallel code. The programs
generated by Linnea consist of a sequence of calls to li-
brary kernels. On the one hand, these calls are often inde-
pendent from one another and can be executed in parallel;
on the other hand, the kernels themselves might offer multi-
threading. The challenge lies in the distribution of the avail-
able resources (computing cores & threads) to the kernels.
The range of possibilities is broad, as it includes static and
dynamic scheduling and overbooking [3], and the optimal
solution is typically found only by trial and error.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ guide, volume 9. SIAM, 1999.

1 2018/2/14



[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff.
A set of Level 3 Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software (TOMS), 16(1):1–17,
1990.

[3] E. Peise and P. Bientinesi. The ELAPS Framework - Exper-
imental Linear Algebra Performance Studies. CoRR, cs.PF,
2015.

2 2018/2/14


	Code Generation for Linear Algebra
	Parallel Code Generation
	Generation of Parallel Code

