Extensible translation for high-level synthesis

Matthew Taylor -

Imperial College London

m.taylorl6@imperial.ac.uk

February 22,2018

Abstract

Contemporary high-level synthesis (HLS) tools allow
the description of processes intended for execution on
reconfigurable hardware, typically FPGAs, to be writ-
ten at a higher level of abstraction than traditional hard-
ware description languages. Such higher level languages
support certain forms of extensibility—for instance the
ability to declare named functions and methods or sup-
port for macros and templates—which may be classi-
fied broadly as mechanisms for linguistic extensibility.
However in another sense they are relatively inexten-
sible, specifically with respect to the process of transla-
tion from source level to register-transfer level (RTL)—
which we denominate here as translational extensibility—
the translation process is essentially fixed with respect
to the static semantics of the source language.

We argue that such a lack of translational extensibil-
ity gives rise to three principal issues: (i) it limits the
range of valid translations the compiler may practically
explore; (ii) it limits the level of abstraction attainable
in the source language description; (iii) it precludes
the possibility for precise control of the RTL description.
In response we propose a systematic mechanism for ex-
posing translational extensibility in the source language,
which we claim provides an effective remedy for each of
these issues.

We observe regarding issue (i) that as the level of ab-
straction is raised the range of valid RTL translations
necessarily broadens, exceeding that which may feasibly
be explored automatically. Thus HLS tools commonly
employ some guidance from the programmer to find
an acceptably performing translation. For instance C
or C++ compilers make extensive use of #pragma direc-
tives to guide storage layout and operation scheduling
decisions. Directives in particular have significant short-
comings: viewed as a domain-specific language they are
highly restrictive, only capable of eliciting those out-
comes presupposed by the compiler vendor; and further
their language structure is remarkably weak, offering
little support for abstraction and conditional or context-

sensitive parameter selection. Resulting from such de-
ficiencies, best current practice necessitates manual in-
place deabstraction of source descriptions to guide to the
compiler. We argue in contrast for a guidance mecha-
nism not requiring such in-place deabstraction, and in
which guiding instructions are written separately in the
source language itself.

Given that raising the level of abstraction in the source
description aggravates the need for more detailed guid-
ance, it is clear that the expressiveness of the guidance
mechanism establishes a practical limit to the level of
abstraction supported by the source language: issue
(if). We therefore argue for a Turing-complete guid-
ance language, for which the source language stands
as a reasonable candidate. Guidance expressivity is not
sufficient however, as it is simultaneously required to
remove commitment to operational details in the algo-
rithm description—this calls for cooperation with lin-
guistic extensibility.

Finally concerning issue (iii), any sophisticated project
eventually becomes concerned with performance at the
hardware level (for certain limiting components). The
inability to achieve an essentially optimal RTL transla-
tion for the bottleneck is usually unacceptable, as is the
prospect of describing it explicitly in RTL. We advocate
an approach by which any part of the translation process
can be overridden, using standard principles of object-
oriented extension, such that arbitrary source terms may
give rise to arbitrary RTL, without sacrificing the au-
tomation benefits the compiler is usefully affording.

We present a proof-of-concept system, Alde, which
embodies the essential structure called for above. Alde
is both a language and synthesis system, and serves as
a reference design for the approach and features we de-
scribe. The language semantics derive from Kernel [3],
the system architecture takes inspiration from COLA [2],
and the translation approach is akin to Micros [1]. We
show how Alde may be applied to common program-
ming challenges afflicted by one or more of the issues
enumerated, and how its features provide an effective
remedy.

mailto:m.taylor16@imperial.ac.uk

References

[1] Shriram Krishnamurthi. Linguistic Reuse. PhD
thesis, Rice University, 2001. URL https://
dl.acm.org/citation.cfm?id=934293.

[2] Jan Piumarta. Accessible language-based
environments of recursive theories, 2006. URL
http://www.vpri.org/pdf/rn2006001a_
colaswp.pdf.

[3] John N. Shutt. Fexprs as the basis of Lisp
function application; or, $vau: the ultimate
abstraction. PhD thesis, Worcester Polytechnic
Institute, 2010. URL http://web.wpi.edu/
Pubs/ETD/Available/etd-090110-124904/
unrestricted/jshutt.pdf.

https://dl.acm.org/citation.cfm?id=934293
https://dl.acm.org/citation.cfm?id=934293
http://www.vpri.org/pdf/rn2006001a_colaswp.pdf
http://www.vpri.org/pdf/rn2006001a_colaswp.pdf
http://web.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf
http://web.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf
http://web.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf

